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Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 1: Introduction and 
Computational Thinking
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Course Objective

• To master the most commonly used algorithm 
techniques and computational thinking skills 
needed for many-core GPU programming
– Especially the simple ones!

• In particular, to understand
– Many-core hardware limitations and constraints
– Desirable and undesirable computation patterns
– Commonly used algorithm techniques to convert 

undesirable computation patterns into desirable ones
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• An enlarging peak performance advantage:
– Calculation: 1 TFLOPS vs. 100 GFLOPS
– Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

– GPU in every PC and workstation – massive volume and potential 
impact

Performance Advantage of GPUs

Courtesy: John Owens
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CPUs and GPUs have 
fundamentally different design 

philosophies.
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UIUC/NCSA AC Cluster
• 32 nodes

– 4-GPU (GTX280, Tesla) 
nodes

– GPUs donated by 
NVIDIA

– Host boxes funded by 
NSF CRI

• Coulomb Summation:
– 1.78 TFLOPS/node
– 271x speedup vs. one 

Intel QX6700 CPU core 
w/ SSE

UIUC/NCSA AC Cluster
http://iacat.uiuc.edu/resources/cluster/ 

A partnership between 
NCSA and UIUC 
academic departments. 5



EcoG - One of the Most Energy 
Efficient Supercomputers in the World

• #3 of the Nov 2010 
Green 500 list

• 128 nodes
• One Fermi GPU per 

node
• 934 MFLOPS/Watt
• 33.6 TFLOPS DP 

Linpack

• Built by Illinois 
students and NVIDIA 
researchers
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GPU computing is catching on.

• 280 submissions to GPU Computing Gems
– 110 articles included in two volumes
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A Common GPU Usage Pattern
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• A desirable approach considered impractical
– Due to excessive computational requirement
– But demonstrated to achieve domain benefit
– Convolution filtering (e.g. bilateral Gaussian filters), De 

Novo gene assembly, etc.

• Use GPUs to accelerate the most time-consuming 
aspects of the approach
– Kernels in CUDA or OpenCL
– Refactor host code to better support kernels

• Rethink the domain problem 8
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CUDA /OpenCL – Execution Model
• Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host) 

. . .

. . .

Parallel Kernel (device) 
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host) 

Parallel Kernel (device) 
KernelB<<< nBlk, nTid >>>(args);
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CUDA Devices and Threads
• A compute device

– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory) 
– Runs many threads (work elements for OpenCL) in parallel
– Is typically a GPU but can also be another type of  parallel 

processing device 

• Data-parallel portions of an application are expressed as 
device kernels which run on many threads

• Differences between GPU and CPU threads 
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few
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Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads
– All threads run the same code (SPMD) 
– Each thread has an index that it uses to compute 

memory addresses and make control decisions

76543210

…
float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
…

threads
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…
float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
…

threads

Thread Block 0

…
…
float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
…

Thread Block 1

…
float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks
– Threads within a block cooperate via shared memory, 

atomic operations and barrier synchronization
– Threads in different blocks cannot cooperate

76543210 76543210 76543210
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Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

       

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

blockIdx and threadIdx

• Each thread uses indices to 
decide what data to work on
– blockIdx: 1D or 2D
– threadIdx: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …
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Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAdd(float* A, float* B, float* C, int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

int main()

{

// Run ceil(N/256) blocks of 256 threads each

vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, n);

}

Device Code
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Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAdd(float* A, float* B, float* C, int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

int main()

{

// Run ceil(N/256) blocks of 256 threads each

vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, N);

}

Host Code
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__global__
void saxpy(int n, float a,

float *x, float *y)
{

int i = blockIdx.x * blockDim.x
+ threadIdx.x;

if( i<n )  y[i] = a * x[i] + y[i];
}

__host__
void example()
{

int B = 128,
P = ceil(n/B);

vecAdd<<<P,B>>>(n,a,x,y);
}

Kernel execution in a nutshell

KernelBlk 0 Blk
p-1• • •

GPU
M0

RAM

Mk

RAM
• • •

Schedule onto multiprocessors
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Harvesting Performance Benefit of 
Many-core GPU Requires

• Massive parallelism in application algorithms
– Data parallelism

• Regular computation and data accesses
– Similar work for parallel threads

• Avoidance of conflicts in critical resources
– Off-chip DRAM (Global Memory) bandwidth
– Conflicting parallel updates to memory locations
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Massive Parallelism - Regularity
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Main Hurdles to Overcome

• Serialization due to 
conflicting use of 
critical resources

• Over subscription of 
Global Memory 
bandwidth

• Load imbalance 
among parallel threads
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Computational Thinking Skills

• The ability to translate/formulate domain 
problems into computational models that can be 
solved efficiently by available computing 
resources
– Understanding the relationship between the domain 

problem and the computational models
– Understanding the strength and limitations of the 

computing devices
– Defining problems and models to enable efficient 

computational solutions
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DATA ACCESS CONFLICTS
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Conflicting Data Accesses Cause 
Serialization and Delays

• Massively parallel 
execution cannot 
afford serialization

• Contentions in 
accessing critical data 
causes serialization
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A Simple Example
• A naïve inner product algorithm of two vectors of 

one million elements each
– All multiplications can be done in time unit (parallel)
– Additions to a single accumulator in one million time 

units (serial)
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How much can conflicts hurt?

• Amdahl’s Law
– If fraction X of a computation is serialized, the 

speedup can not be more than 1/(1-X)

• In the previous example, X = 50%
– Half the calculations are serialized
– No more than 2X speedup, no matter how many 

computing cores are used
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GLOBAL MEMORY 
BANDWIDTH
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Global Memory Bandwidth

Ideal Reality
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Global Memory Bandwidth
• Many-core processors have limited off-chip 

memory access bandwidth compared to peak 
compute throughput

• Fermi
– 1 TFLOPS SPFP peak throughput
– 0.5 TFLOPS DPFP peak throughput
– 144 GB/s peak off-chip memory access bandwidth

• 36 G SPFP operands per second 
• 18 G DPFP operands per second 

– To achieve peak throughput, a program must perform 
1,000/36 = ~28 SPFP (14 DPFP) arithmetic operations 
for each operand value fetched from off-chip memory
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LOAD BALANCE
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Load Balance

• The total amount of time to complete a parallel 
job is limited by the thread that takes the longest 
to finish
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good bad
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How bad can it be?

• Assume that a job takes 100 units of time for one 
person to finish
– If we break up the job into 10 parts of 10 units each 

and have fo10 people to do it in parallel, we can get a 
10X speedup

– If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5 
units, the same 10 people will take 50 units to finish, 
with 9 of them idling for most of the time. We will get 
no more than 2X speedup.
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How does imbalance come about?
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• Non-uniform data 
distributions
– Highly concentrated 

spatial data areas
– Astronomy, medical 

imaging, computer 
vision, rendering, …

• If each thread 
processes the input 
data of a given spatial 
volume unit, some will 
do a lot more work 
than others 31



Eight Algorithmic Techniques 
(so far)
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http://courses.engr.illinois.edu/ece598/hk/
GPU Computing Gems, Vol. 1 and 2
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You can do it.

• Computational thinking 
is not as hard as you 
may think it is.
– Most techniques have 

been explained, if at all, 
at the level of computer 
experts.

– The purpose of the 
course is to make them 
accessible to domain 
scientists and engineers.
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ANY MORE QUESTIONS?
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