
©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 1: Introduction and
Computational Thinking

1

Course Objective

• To master the most commonly used algorithm
techniques and computational thinking skills
needed for many-core GPU programming
– Especially the simple ones!

• In particular, to understand
– Many-core hardware limitations and constraints
– Desirable and undesirable computation patterns
– Commonly used algorithm techniques to convert

undesirable computation patterns into desirable ones

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

2

• An enlarging peak performance advantage:
– Calculation: 1 TFLOPS vs. 100 GFLOPS
– Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

– GPU in every PC and workstation – massive volume and potential
impact

Performance Advantage of GPUs

Courtesy: John Owens

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

3

©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley,
January 24-25, 2011

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

CPUs and GPUs have
fundamentally different design

philosophies.

4

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

UIUC/NCSA AC Cluster
• 32 nodes

– 4-GPU (GTX280, Tesla)
nodes

– GPUs donated by
NVIDIA

– Host boxes funded by
NSF CRI

• Coulomb Summation:
– 1.78 TFLOPS/node
– 271x speedup vs. one

Intel QX6700 CPU core
w/ SSE

UIUC/NCSA AC Cluster
http://iacat.uiuc.edu/resources/cluster/

A partnership between
NCSA and UIUC
academic departments. 5

EcoG - One of the Most Energy
Efficient Supercomputers in the World

• #3 of the Nov 2010
Green 500 list

• 128 nodes
• One Fermi GPU per

node
• 934 MFLOPS/Watt
• 33.6 TFLOPS DP

Linpack

• Built by Illinois
students and NVIDIA
researchers

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

6

GPU computing is catching on.

• 280 submissions to GPU Computing Gems
– 110 articles included in two volumes

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Financial
Analysis

Scientific
Simulation

Engineering
Simulation

Data
Intensive
Analytics

Medical
Imaging

Digital
Audio

Processing

Computer
Vision

Digital
Video

Processing

Biomedical
Informatics

Electronic
Design

Automation

Statistical
Modeling

Ray
Tracing

Rendering

Interactive
Physics

Numerical
Methods

7

A Common GPU Usage Pattern

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

• A desirable approach considered impractical
– Due to excessive computational requirement
– But demonstrated to achieve domain benefit
– Convolution filtering (e.g. bilateral Gaussian filters), De

Novo gene assembly, etc.

• Use GPUs to accelerate the most time-consuming
aspects of the approach
– Kernels in CUDA or OpenCL
– Refactor host code to better support kernels

• Rethink the domain problem 8

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

CUDA /OpenCL – Execution Model
• Integrated host+device app C program

– Serial or modestly parallel parts in host C code
– Highly parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

9

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

CUDA Devices and Threads
• A compute device

– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads (work elements for OpenCL) in parallel
– Is typically a GPU but can also be another type of parallel

processing device

• Data-parallel portions of an application are expressed as
device kernels which run on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few

10

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011 11

Arrays of Parallel Threads

• A CUDA kernel is executed by an array of
threads
– All threads run the same code (SPMD)
– Each thread has an index that it uses to compute

memory addresses and make control decisions

76543210

…
float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
…

threads

11

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

…
float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
…

threads

Thread Block 0

…
…
float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
…

Thread Block 1

…
float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks
– Threads within a block cooperate via shared memory,

atomic operations and barrier synchronization
– Threads in different blocks cannot cooperate

76543210 76543210 76543210

12

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(0, 1)

Block
(1, 1)

Grid 2

Courtesy: NDVIA

Block (1, 1)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

blockIdx and threadIdx

• Each thread uses indices to
decide what data to work on
– blockIdx: 1D or 2D
– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

13

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAdd(float* A, float* B, float* C, int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

int main()

{

// Run ceil(N/256) blocks of 256 threads each

vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, n);

}

Device Code

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

14

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__

void vecAdd(float* A, float* B, float* C, int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i<n) C[i] = A[i] + B[i];

}

int main()

{

// Run ceil(N/256) blocks of 256 threads each

vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, N);

}

Host Code

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

15

__global__
void saxpy(int n, float a,

float *x, float *y)
{

int i = blockIdx.x * blockDim.x
+ threadIdx.x;

if(i<n) y[i] = a * x[i] + y[i];
}

__host__
void example()
{

int B = 128,
P = ceil(n/B);

vecAdd<<<P,B>>>(n,a,x,y);
}

Kernel execution in a nutshell

KernelBlk 0 Blk
p-1• • •

GPU
M0

RAM

Mk

RAM
• • •

Schedule onto multiprocessors

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

16

Harvesting Performance Benefit of
Many-core GPU Requires

• Massive parallelism in application algorithms
– Data parallelism

• Regular computation and data accesses
– Similar work for parallel threads

• Avoidance of conflicts in critical resources
– Off-chip DRAM (Global Memory) bandwidth
– Conflicting parallel updates to memory locations

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

17

Massive Parallelism - Regularity

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

18

Main Hurdles to Overcome

• Serialization due to
conflicting use of
critical resources

• Over subscription of
Global Memory
bandwidth

• Load imbalance
among parallel threads

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

19

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Computational Thinking Skills

• The ability to translate/formulate domain
problems into computational models that can be
solved efficiently by available computing
resources
– Understanding the relationship between the domain

problem and the computational models
– Understanding the strength and limitations of the

computing devices
– Defining problems and models to enable efficient

computational solutions

20

DATA ACCESS CONFLICTS

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

21

Conflicting Data Accesses Cause
Serialization and Delays

• Massively parallel
execution cannot
afford serialization

• Contentions in
accessing critical data
causes serialization

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

22

A Simple Example
• A naïve inner product algorithm of two vectors of

one million elements each
– All multiplications can be done in time unit (parallel)
– Additions to a single accumulator in one million time

units (serial)

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

*

*

*

*

*

+
*

+ + + ……

Time

23

How much can conflicts hurt?

• Amdahl’s Law
– If fraction X of a computation is serialized, the

speedup can not be more than 1/(1-X)

• In the previous example, X = 50%
– Half the calculations are serialized
– No more than 2X speedup, no matter how many

computing cores are used

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

24

GLOBAL MEMORY
BANDWIDTH

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

25

Global Memory Bandwidth

Ideal Reality

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

26

Global Memory Bandwidth
• Many-core processors have limited off-chip

memory access bandwidth compared to peak
compute throughput

• Fermi
– 1 TFLOPS SPFP peak throughput
– 0.5 TFLOPS DPFP peak throughput
– 144 GB/s peak off-chip memory access bandwidth

• 36 G SPFP operands per second
• 18 G DPFP operands per second

– To achieve peak throughput, a program must perform
1,000/36 = ~28 SPFP (14 DPFP) arithmetic operations
for each operand value fetched from off-chip memory

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

27

LOAD BALANCE

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

28

Load Balance

• The total amount of time to complete a parallel
job is limited by the thread that takes the longest
to finish

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

good bad

29

How bad can it be?

• Assume that a job takes 100 units of time for one
person to finish
– If we break up the job into 10 parts of 10 units each

and have fo10 people to do it in parallel, we can get a
10X speedup

– If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5
units, the same 10 people will take 50 units to finish,
with 9 of them idling for most of the time. We will get
no more than 2X speedup.

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

30

How does imbalance come about?

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

• Non-uniform data
distributions
– Highly concentrated

spatial data areas
– Astronomy, medical

imaging, computer
vision, rendering, …

• If each thread
processes the input
data of a given spatial
volume unit, some will
do a lot more work
than others 31

Eight Algorithmic Techniques
(so far)

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

http://courses.engr.illinois.edu/ece598/hk/
GPU Computing Gems, Vol. 1 and 2

32

http://courses.engr.illinois.edu/ece598/hk/�

You can do it.

• Computational thinking
is not as hard as you
may think it is.
– Most techniques have

been explained, if at all,
at the level of computer
experts.

– The purpose of the
course is to make them
accessible to domain
scientists and engineers.

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

33

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

34

	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 1: Introduction and Computational Thinking
	Course Objective
	Performance Advantage of GPUs
	CPUs and GPUs have fundamentally different design philosophies.
	UIUC/NCSA AC Cluster
	EcoG - One of the Most Energy Efficient Supercomputers in the World
	GPU computing is catching on.
	A Common GPU Usage Pattern
	CUDA /OpenCL – Execution Model
	CUDA Devices and Threads
	Slide Number 11
	Thread Blocks: Scalable Cooperation
	blockIdx and threadIdx
	Example: Vector Addition Kernel
	Example: Vector Addition Kernel
	Kernel execution in a nutshell
	Harvesting Performance Benefit of Many-core GPU Requires
	Massive Parallelism - Regularity
	Main Hurdles to Overcome
	Computational Thinking Skills
	Data Access Conflicts
	Conflicting Data Accesses Cause Serialization and Delays
	A Simple Example
	How much can conflicts hurt?
	Global Memory Bandwidth
	Global Memory Bandwidth
	Global Memory Bandwidth
	Load balance
	Load Balance
	How bad can it be?
	How does imbalance come about?
	Eight Algorithmic Techniques �(so far)
	You can do it.
	Any More Questions?

