
©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 2: Parallelism Scalability
Transformations

1

A Common Sequential Computation
Pattern

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Double
Nested
Loop

iterate over out

iterate over in

in

out
2

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

out[n] += f(in[m], m, n);
}

}

A Simple Code Example

• Input data in
– M = # scan points

• Output data out
– N = # regularized

scan points

• Complexity is
O(MN)

• Output tends to be
more regular than
input

Gridding1

kx

ky

kx

ky

3

Presenter
Presentation Notes
The algorithms for Q and FHd are nearly identical, so in the interest of time we’ll examine only Q.
There are M scan points, with the 3D scan data represented by kx, ky, kz, and phi.
There are N pixels, with the 3D pixel data represented by x, y, and z (inputs) and Q (output).

As you can see, the algorithm is embarrassingly data-parallel.
Each iteration of the outer loop corresponds to a single point of scan data. For that single point of scan data, we first compute the magnitude-squared of phi. Then, the inner loop iterates over all the pixels, because the current scan data point contributes to the value of Q at every pixel. In other words, the value of Q at each pixel depends on every scan point. Clearly, the algorithm is O(MN).

Examining the inner loop more closely, we see that there are 10 floating-point arithmetic operations, 2 floating-point trig operations, and 10 loads. This instruction mix hints at the bottlenecks we face as we map this algorithm to the G80.

Scatter Parallelization

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Thread 1 Thread 2 …

in

out

iterate over out

4

Scatter can be very slow.

• All threads have conflicting updates to the same
out elements
– Serialized with atomic operations
– Very costly (slow) for large number of threads

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

+
*

+ + + ……

Time

+
*

+ + + ……

All threads atomically update out[0] All threads atomically update out[1]

5

Atomic Operations on DRAM

• Each Load-Modify-Store has two full memory
access delays
– All atomic operations on the same variable (RAM

location) are serialized

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

DRAM delay DRAM delay

transfer delay

internal routing
DRAM delay

transfer delay

internal routing

..

atomic operation N atomic operation N+1

time

6

Hardware Improvements

• Atomic operations on Shared Memory
– Very short latency, but still serialized
– Private to each thread block
– Algorithm work for programmers (more later)

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

internal routing

..

atomic operation N atomic operation N+1

time

data transfer

7

Hardware Improvements (cont.)

• Atomic operations on Fermi L2 cache
– medium latency, but still serialized
– Global to all blocks
– “Free improvement” on Global Memory atomics

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

internal routing

..

atomic operation N atomic operation N+1

time

data transfer data transfer

8

Gather Parallelization

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Thread 1 Thread 2 …

in

out

9

Gather can be very fast.

• All threads can read the same in elements
– No serialization
– Can even be efficiently consolidated through caches

or local memories

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

+
*

+

+
+

…

Time

All threads update their
own out elements+

*

+

+
+

+
*

+

+
+

10

Why is scatter parallelization often
used rather than gather?

• In practice, each in element does not affect all out
elements

• Output tends to be much more regular than input

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

kx

ky

kx

ky

11

Why is scatter parallelization often
used rather than gather?

• It is easy to calculate all out elements affected by
an in element
– Harder to calculate all in elements that affect an out
– Easy thread kernel code if written in scatter

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

kx

ky

kx

ky

12

Challenges in Gather Parallelization

• Regularize input elements so that it is easier to
find all in elements that affects an out element
– Cut-off Binning Lecture

• Can be even more challenging if data is highly
non-uniform
– Cut-off Binning for Non-Uniform Data Lecture

(ECE598HK)

• For this lecture, we assume that all in elements
affect all out elements

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

13

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Molecular Modeling: Ion Placement
• Biomolecular simulations

attempt to replicate in vivo
conditions in silico

• Model structures are initially
constructed in vacuum

• Solvent (water) and ions are
added as necessary to
reproduce the required
biological conditions

14

Ion Placement Process (Step 1)

• Calculate initial electrostatic potential map
around the simulated structure considering the
contributions of all atoms
– Most time consuming, focus of our example.

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Lattice point
being evaluated

15

Ion Placement Process (Step 2)

• Ions are then placed one at a time:
– Find the voxel containing the minimum potential value
– Add a new ion atom at location of minimum potential
– Add the potential contribution of the newly placed ion

to the entire map
– Repeat until the required number of ions have been

added

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

16

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Overview of Direct Coulomb
Summation (DCS) Algorithm

• One way to compute the electrostatic potentials on a grid,
ideally suited for the GPU
– All atoms affect all map lattice points, most accurate

• For each lattice point, sum potential contributions for all
atoms in the simulated structure:

potential += charge[i] / (distance to atom[i])

• Approximation-based methods such as cut-off summation
can achieve much higher performance at the cost of
some numerical accuracy and flexibility
– Will cover these later

17

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Direct Coulomb Summation (DCS)
Algorithm Detail

• At each lattice point, sum potential contributions
for all atoms in the simulated structure:

potential += charge[i] / (distance to atom[i])

Atom[i]

Distance to
Atom[i]

Lattice point
being evaluated

18

Electrostatic Potential Map
Calculation Function Overview

• Each call calculates an x-y slice of the energy map
– energygrid – pointer to the entire potential map
– grid – the x, y, z dimensions of the potential map
– gridspacing – modeled physical dist between grid points
– atoms – array of x, y, z coordinates and charge of atoms
– numatoms – number of atoms in atoms array

void cenergy(float *energygrid, dim3 grid, float
gridspacing, float z, const float *atoms, int
numatoms) {}

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

19

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

} }

Input oriented

20

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

} }
21

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

} }
22

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

} }
23

Summary of Sequential C Version
• Algorithm is input oriented

– For each input atom, calculate its contribution to all
grid points in an x-y slice

• Output (energygrid) is very regular
– Simple linear mapping between grid point indices and

modeled physical coordinates
• Input (atom) is irregular

– Modeled x,y,z coordinate of each atom needs to be
stored in the atom array

• The algorithm is efficient in performing minimal
calculations on distances, coordinates, etc.

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

24

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Irregular Input vs. Regular Output

• Atoms come from
modeled molecular
structures, solvent
(water) and ions
– Irregular by necessity

• Energy grid models
the electrostatic
potential value at
regularly spaced
points
– Regular by design

25

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

CUDA DCS Implementation
Overview

• Allocate and initialize potential map memory on host CPU
• Allocate potential map slice buffer on GPU
• Preprocess atom coordinates and charges
• Loop over potential map slices:

– Copy potential map slice from host to GPU
– Loop over groups of atoms:

• Copy atom data to GPU
• Run CUDA Kernel on atoms and potential map slice on GPU

– Copy potential map slice from GPU to host

• Free resources

26

Straightforward CUDA Parallelization

• Use each thread to compute the contribution of
an atom to all grid points in the current slice
– Scatter parallelization

• Kernel code largely correspond to intuitive CPU
version with outer loop stripped
– Each thread corresponds to an outer loop iteration of

CPU version
– numatoms used in kernel launch configuration host

code

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

27

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

A Very Slow DCS Scatter Kernel!
void __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing,

float z) {
int n = (blockIdx.x * blockDim .x + threadIdx.x) * 4;
float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2));

}
}

}
}

28

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

A Very Slow DCS Scatter Kernel!
void __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing,

float z) {
int n = (blockIdx.x * blockDim .x + threadIdx.x) *4;
float dz = z - atoms[n+2]; // all grid points in a slice have the same z value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1]; // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset = grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2));

}
}

}
}

Needs to be done as
an atomic operation

29

Pros and Cons of the Scatter
Kernel

• Pros
– Follows closely the simple CPU version
– Good for software engineering and code maintenance
– Preserves computation efficiency (coordinates,

distances, offsets) of sequential code

• Cons
– The atomic add serializes the execution, very slow!
– Not even worth trying this yourself.

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

30

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

A Slower Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

int atomarrdim = numatoms * 4;
int k = z / gridspacing;
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}
}

}

Output oriented.

31

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

A Slower Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms,

int numatoms) {

int atomarrdim = numatoms * 4;
int k = z / gridspacing;
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float energy = 0.0f
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}
}

}

More redundant work.

32

Pros and Cons of the Slower
Sequential Code

• Pros
– Fewer access to the energygrid array
– Simpler code structure

• Cons
– Many more calculations on the coordinates
– More access to the atom array
– Overall, much slower sequential execution due to the

sheer number of calculations performed

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

33

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

DCS CUDA Block/Grid Decomposition
(no register tiling)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks:
64-256 threads

Threads compute
1 potential each

34

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float

*atoms, int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int atomarrdim = numatoms * 4;
int k = z / gridspacing;
float y = gridspacing * (float) j;
float x = gridspacing * (float) i;
float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

One thread per grid point

35

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float

*atoms, int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int atomarrdim = numatoms * 4;
int k = z / gridspacing;
float y = gridspacing * (float) j;
float x = gridspacing * (float) i;
float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) { // calculate potential contribution of each atom

float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

All threads access all atoms.
Consolidated writes to grid points

36

Additional Comments

• Further optimizations
– dz*dz can be pre-calculated and sent in place of z

• Gather kernel is much faster than a scatter
kernel
– No serialization due to atomic operations

• Compute efficient sequential algorithm does not
translate into the fast parallel algorithm
– Gather vs. scatter is a big factor
– But we will come back to this point later!

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

37

Even More Comments

• In modern CPUs, cache effectiveness is often
more important than compute efficiency

• The input oriented (scatter) sequential code
actually has very bad cache performance
– energygrid[] is a very large array, typically 20X or

more larger than atom[]
– The input oriented sequential code sweeps through

the large data structure for each atom, trashing cache.
• The fastest sequential code is actually an

optimized output oriented code

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

38

Outline of A Fast Sequential Code
for all z {
for all atoms {precompute dz2 }
for all y {

for all atoms {precompute dy2 (+ dz2) }
for all x {

for all atoms {
compute contribution to current x,y,z point
using precomputed dy2 and dz2

}
} } }

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

39

More Thoughts on Fast Sequential
Code

• Need temporary arrays for pre-calculated dz2

and dy2 + dz2 values
• So, why does this code has better cache behaior

on CPUs?

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

40

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

41

Reduction – A Degenerate Case

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Double
Nested
Loop

iterate over in

in

out
42

There is no output parallelism!

• There is only one output

• But scatter style code is not acceptable
– Each threads reads one input and accumulate into

one reduction variable with atomic operation
– All input threads write to ONE output location

• Tree reduction makes more sense

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

43

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Solution – Create Multiple Outputs

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

44

	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 2: Parallelism Scalability Transformations
	A Common Sequential Computation Pattern
	A Simple Code Example
	Scatter Parallelization
	Scatter can be very slow.
	Atomic Operations on DRAM
	Hardware Improvements
	Hardware Improvements (cont.)
	Gather Parallelization
	Gather can be very fast.
	Why is scatter parallelization often used rather than gather?
	Why is scatter parallelization often used rather than gather?
	Challenges in Gather Parallelization
	Molecular Modeling: Ion Placement
	Ion Placement Process (Step 1)
	Ion Placement Process (Step 2)
	Overview of Direct Coulomb Summation (DCS) Algorithm
	Direct Coulomb Summation (DCS) Algorithm Detail
	Electrostatic Potential Map Calculation Function Overview
	An Intuitive Sequential C Version
	An Intuitive Sequential C Version
	An Intuitive Sequential C Version
	An Intuitive Sequential C Version
	Summary of Sequential C Version
	Irregular Input vs. Regular Output
	CUDA DCS Implementation Overview
	Straightforward CUDA Parallelization
	A Very Slow DCS Scatter Kernel!
	A Very Slow DCS Scatter Kernel!
	Pros and Cons of the Scatter Kernel
	A Slower Sequential C Version
	A Slower Sequential C Version
	Pros and Cons of the Slower Sequential Code
	DCS CUDA Block/Grid Decomposition �(no register tiling)
	A Fast DCS CUDA Gather Kernel
	A Fast DCS CUDA Gather Kernel
	Additional Comments
	Even More Comments
	Outline of A Fast Sequential Code
	More Thoughts on Fast Sequential Code
	Any more Questions?
	Reduction – A Degenerate Case
	There is no output parallelism!
	Solution – Create Multiple Outputs

