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A Common Sequential Computation 
Pattern
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for (m = 0; m < M; m++) {

for (n = 0; n < N; n++) {

out[n] += f(in[m], m, n);
}

}

A Simple Code Example

• Input data in
– M = # scan points

• Output data out
– N = # regularized 

scan points

• Complexity is 
O(MN)

• Output tends to be 
more regular than 
input

Gridding1
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Presenter
Presentation Notes
The algorithms for Q and FHd are nearly identical, so in the interest of time we’ll examine only Q.
There are M scan points, with the 3D scan data represented by kx, ky, kz, and phi.
There are N pixels, with the 3D pixel data represented by x, y, and z (inputs) and Q (output).

As you can see, the algorithm is embarrassingly data-parallel.
Each iteration of the outer loop corresponds to a single point of scan data. For that single point of scan data, we first compute the magnitude-squared of phi. Then, the inner loop iterates over all the pixels, because the current scan data point contributes to the value of Q at every pixel. In other words, the value of Q at each pixel depends on every scan point. Clearly, the algorithm is O(MN).

Examining the inner loop more closely, we see that there are 10 floating-point arithmetic operations, 2 floating-point trig operations, and 10 loads. This instruction mix hints at the bottlenecks we face as we map this algorithm to the G80.




Scatter Parallelization
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Scatter can be very slow.

• All threads have conflicting updates to the same 
out elements
– Serialized with atomic operations
– Very costly (slow) for large number of threads
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Atomic Operations on DRAM

• Each Load-Modify-Store has two full memory 
access delays 
– All atomic operations on the same variable (RAM 

location) are serialized
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Hardware Improvements

• Atomic operations on Shared Memory
– Very short latency, but still serialized
– Private to each thread block
– Algorithm work for programmers (more later)
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Hardware Improvements (cont.)

• Atomic operations on Fermi L2 cache
– medium latency, but still serialized
– Global to all blocks
– “Free improvement” on Global Memory atomics
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Gather Parallelization
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Gather can be very fast.

• All threads can read the same in elements
– No serialization
– Can even be efficiently consolidated through caches 

or local memories
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Why is scatter parallelization often 
used rather than gather?

• In practice, each in element does not affect all out 
elements

• Output tends to be much more regular than input
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Why is scatter parallelization often 
used rather than gather?

• It is easy to calculate all out elements affected by 
an in element
– Harder to calculate all in elements that affect an out
– Easy thread kernel code if written in scatter
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Challenges in Gather Parallelization

• Regularize input elements so that it is easier to 
find all in elements that affects an out element
– Cut-off Binning Lecture

• Can be even more challenging if data is highly 
non-uniform
– Cut-off Binning for Non-Uniform Data Lecture 

(ECE598HK)

• For this lecture, we assume that all in elements 
affect all out elements
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Molecular Modeling: Ion Placement
• Biomolecular simulations 

attempt to replicate in vivo
conditions in silico

• Model structures are initially 
constructed in vacuum

• Solvent (water) and ions are 
added as necessary to 
reproduce the required 
biological conditions
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Ion Placement Process (Step 1)

• Calculate initial electrostatic potential map 
around the simulated structure considering the 
contributions of all atoms
– Most time consuming, focus of our example.
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Lattice point 
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Ion Placement Process (Step 2)

• Ions are then placed one at a time:
– Find the voxel containing the minimum potential value
– Add a new ion atom at location of minimum potential
– Add the potential contribution of the newly placed ion 

to the entire map
– Repeat until the required number of ions have been 

added 
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Overview of Direct Coulomb 
Summation (DCS) Algorithm

• One way to compute the electrostatic potentials on a grid, 
ideally suited for the GPU
– All atoms affect all map lattice points, most accurate

• For each lattice point, sum potential contributions for all 
atoms in the simulated structure: 

potential +=  charge[i] / (distance to atom[i])

• Approximation-based methods such as cut-off summation 
can achieve much higher performance at the cost of 
some numerical accuracy and flexibility
– Will cover these later
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Direct Coulomb Summation (DCS) 
Algorithm Detail

• At each lattice point, sum potential contributions 
for all atoms in the simulated structure: 

potential +=  charge[i] / (distance to atom[i])

Atom[i]

Distance to 
Atom[i]

Lattice point 
being evaluated
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Electrostatic Potential Map 
Calculation Function Overview

• Each call calculates an x-y slice of the energy map
– energygrid – pointer to the entire potential map
– grid – the x, y, z dimensions of the potential map
– gridspacing – modeled physical dist between grid points
– atoms – array of x, y, z coordinates and charge of atoms
– numatoms – number of atoms in atoms array

void cenergy(float *energygrid, dim3 grid, float 
gridspacing, float z, const float *atoms, int 
numatoms) {}
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An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) {
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

} }

Input oriented 
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An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) {
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

} }
21
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An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) {
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

} }
22
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An Intuitive Sequential C Version
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) {
int atomarrdim = numatoms * 4; //x,y,z, and charge info for each atom
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i] += charge / sqrtf(dx*dx + dy2+ dz2);

}
}

} }
23



Summary of Sequential C Version
• Algorithm is input oriented

– For each input atom, calculate its contribution to all 
grid points in an x-y slice

• Output (energygrid) is very regular
– Simple linear mapping between grid point indices and 

modeled physical coordinates
• Input (atom) is irregular

– Modeled x,y,z coordinate of each atom needs to be 
stored in the atom array

• The algorithm is efficient in performing minimal 
calculations on distances, coordinates, etc.
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Irregular Input vs. Regular Output

• Atoms come from 
modeled molecular 
structures, solvent 
(water) and ions
– Irregular by necessity

• Energy grid models 
the electrostatic 
potential value at 
regularly spaced 
points
– Regular by design
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CUDA DCS Implementation 
Overview

• Allocate and initialize potential map memory on host CPU
• Allocate potential map slice buffer on GPU
• Preprocess atom coordinates and charges
• Loop over potential map slices:

– Copy potential map slice from host to GPU
– Loop over groups of atoms:

• Copy atom data to GPU
• Run CUDA Kernel on atoms and potential map slice on GPU

– Copy potential map slice from GPU to host

• Free resources
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Straightforward CUDA Parallelization

• Use each thread to compute the contribution of 
an atom to all grid points in the current slice
– Scatter parallelization

• Kernel code largely correspond to intuitive CPU 
version with outer loop stripped
– Each thread corresponds to an outer loop iteration of 

CPU version
– numatoms used in kernel launch configuration host 

code
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A Very Slow DCS Scatter Kernel!
void  __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing, 

float z) {
int n = (blockIdx.x * blockDim .x + threadIdx.x) * 4;
float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i]  += charge / sqrtf(dx*dx + dy2+ dz2));

}
}

}
}

28
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A Very Slow DCS Scatter Kernel!
void  __global__ cenergy(float *energygrid, float *atoms, dim3 grid, float gridspacing, 

float z) {
int n = (blockIdx.x * blockDim .x + threadIdx.x) *4;
float dz = z - atoms[n+2];  // all grid points in a slice have the same z  value
float dz2 = dz*dz;
int grid_slice_offset = (grid.x*grid.y*z) / gridspacing;
float charge = atoms[n+3];
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
float dy = y - atoms[n+1];  // all grid points in a row have the same y value
float dy2 = dy*dy;
int grid_row_offset =  grid_slice_offset+ grid.x*j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float dx = x - atoms[n    ];
energygrid[grid_row_offset + i]  += charge / sqrtf(dx*dx + dy2+ dz2));

}
}

}
}

Needs to be done as 
an atomic operation
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Pros and Cons of the Scatter 
Kernel

• Pros
– Follows closely the simple CPU version
– Good for software engineering and code maintenance
– Preserves computation efficiency (coordinates, 

distances, offsets) of sequential code

• Cons
– The atomic add serializes the execution, very slow!
– Not even worth trying this yourself.
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A Slower Sequential C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) {

int atomarrdim = numatoms * 4;
int k = z / gridspacing;
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dx = x - atoms[n    ];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}
}

}

Output oriented.
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A Slower Sequential C Version 
void cenergy(float *energygrid, dim3 grid, float gridspacing, float z, const float *atoms, 

int numatoms) {

int atomarrdim = numatoms * 4;
int k = z / gridspacing;
for (int j=0; j<grid.y; j++) {

float y = gridspacing * (float) j;
for (int i=0; i<grid.x; i++) {

float x = gridspacing * (float) i;
float energy = 0.0f
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dx = x - atoms[n    ];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}
}

}

More redundant work.
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Pros and Cons of the Slower 
Sequential Code

• Pros
– Fewer access to the energygrid array
– Simpler code structure

• Cons
– Many more calculations on the coordinates 
– More access to the atom array 
– Overall, much slower sequential execution due to the 

sheer number of calculations performed
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DCS CUDA Block/Grid Decomposition 
(no register tiling)

Padding waste

Grid of thread blocks:

0,0 0,1

1,0 1,1

…

…

… … …

Thread blocks: 
64-256 threads

Threads compute
1 potential each
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A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float 

*atoms, int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int atomarrdim = numatoms * 4;
int k = z / gridspacing;
float y = gridspacing * (float) j;
float x = gridspacing * (float) i;
float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dx = x - atoms[n    ];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

One thread per grid point
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A Fast DCS CUDA Gather Kernel
void __global__ cenergy(float *energygrid, dim3 grid, float gridspacing, float z, float 

*atoms, int numatoms) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
int atomarrdim = numatoms * 4;
int k = z / gridspacing;
float y = gridspacing * (float) j;
float x = gridspacing * (float) i;
float energy = 0.0f;
for (int n=0; n<atomarrdim; n+=4) {     // calculate potential contribution of each atom

float dx = x - atoms[n    ];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

}
energygrid[grid.x*grid.y*k + grid.x*j + i] += energy;

}

All threads access all atoms.
Consolidated writes to grid points
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Additional Comments

• Further optimizations
– dz*dz can be pre-calculated and sent in place of z

• Gather kernel is much faster than a scatter 
kernel
– No serialization due to atomic operations

• Compute efficient sequential algorithm does not 
translate into the fast parallel algorithm
– Gather vs. scatter is a big factor
– But we will come back to this point later!
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Even More Comments

• In modern CPUs, cache effectiveness is often 
more important than compute efficiency

• The input oriented (scatter) sequential code 
actually has very bad cache performance
– energygrid[] is a very large array, typically 20X or 

more larger than atom[]
– The input oriented sequential code sweeps through 

the large data structure for each atom, trashing cache.
• The fastest sequential code is actually an 

optimized output oriented code
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Outline of A Fast Sequential Code
for all z {
for all atoms {precompute dz2 }
for all y {

for all atoms {precompute dy2 (+ dz2) }
for all x {

for all atoms {
compute contribution to current x,y,z point
using precomputed dy2 and dz2

} 
}   }   }
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More Thoughts on Fast Sequential 
Code

• Need temporary arrays for pre-calculated dz2

and dy2 + dz2 values
• So, why does this code has better cache behaior 

on CPUs? 
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ANY MORE QUESTIONS?
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Reduction – A Degenerate Case
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Double 
Nested 
Loop

iterate over in

in

out
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There is no output parallelism!

• There is only one output

• But scatter style code is not acceptable 
– Each threads reads one input and accumulate into 

one reduction variable with atomic operation 
– All input threads write to ONE output location

• Tree reduction makes more sense
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Solution – Create Multiple Outputs

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Array elements 

iterations

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10
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