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Objective

• Reuse each data accessed from the global 
memory multiple times
– Across threads – shared memory blocking
– Within a thread - register tiling

• Register tiling is also often used to re-use 
computation results for increased efficiency.
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Shared Memory Blocking Basic Idea
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Basic Concept of Blocking/Tiling

• In a congested traffic 
system, significant 
reduction of  vehicles can 
greatly improve the delay 
seen by all vehicles
– Carpooling for commuters
– Blocking/Tiling for global 

memory accesses
• drivers = threads,
• cars = data
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Some computations are more 
challenging to block/tile than others.
• Some carpools may 

be easier than others
– More efficient if 

neighbors are also 
classmates or co-
workers

– Some vehicles may be 
more suitable for 
carpooling

• Similar variations exist 
in blocking/tiling
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Carpools need synchronization.

• Good – when people have similar schedule

• Bad – when people have very different schedule
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Same with Blocking/Tiling

• Good – when threads have similar access timing

• Bad – when threads have very different timing
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Outline of Technique

• Identify a block/tile of global memory content that 
are accessed by multiple threads

• Load the block/tile from global memory into on-
chip memory

• Have the multiple threads to access their data 
from the on-chip memory

• Move on to the next block/tile
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Tiled Matrix Multiply
• Each row of Md is accessed by 

multiple threads
• Problem: some threads can be 

much further along than others
– An entire row may need to be in 

on-chip memory
– Not enough on-chip memory for 

large input matrices
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A Small Example

• Can we use two on-
chip memory locations 
to reduce the number 
of M accesses by the 
two threads?
– Not if the two threads 

can have very different 
timing!
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Every M and N Element is used exactly 
twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access
order
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Breaking Md and Nd into Tiles
(cont.)
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Phase 1

Each phase uses one tile from Md and 
one from Nd

Step 4 Step 5 Step 6

T0,0 Md0,0

↓ 
Mds0,0

Nd0,0

↓ 
Nds0,0

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1

Md2,0

↓ 
Mds0,0

Nd0,2

↓ 
Nds0,0

PValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1

T1,0 Md1,0

↓ 
Mds1,0

Nd1,0

↓ 
Nds1,0

PValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1

Md3,0

↓ 
Mds1,0

Nd1,2

↓ 
Nds1,0

PValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1

T0,1 Md0,1

↓ 
Mds0,1

Nd0,1

↓ 
Nds0,1

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1

Md2,1

↓ 
Mds0,1

Nd0,3

↓ 
Nds0,1

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1

T1,1 Md1,1

↓ 
Mds1,1

Nd1,1

↓ 
Nds1,1

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1

Md3,1

↓ 
Mds1,1

Nd1,3

↓ 
Nds1,1

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1

Phase 2

time
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Summary of Small Example

• Each tile contains four elements
• Two tiles loaded in each phase

– 8 memory loads
• Each phase performs 16 operations

– 8 mul, 8 add
• Each element is used twice
• Two floating point operations per load
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Tiled Multiply – Large Matrices
• Make sure that tiles are all 

loaded in vertical patters from 
the global memory

• Md data can then be accessed 
from shared memory in 
horizontal direction



First-order Size Considerations

• Assume
– TILE_WIDTH of 16 gives 16*16 = 256 threads
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float 
loads from global memory for 256 * (2*16) = 
8,192 mul/add operations. 
– Memory bandwidth no longer a limiting factor
– Could use thread coarsening to further reduce traffic

• Each thread block can have up to 1024 threads
– Can use 32*32 tiles to further reduce traffic
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Loading a Tile

• All threads in a block participate
– Each thread loads one Md element and one Nd 

element in based tiled code

• Assign the loaded element to each thread such 
that the accesses within each warp is coalesced
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CUDA Code – Kernel Execution 
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width  / TILE_WIDTH, 

Width /  TILE_WIDTH);
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Tiled Multiply
• Each block computes one 

square sub-matrix Pdsub of size 
TILE_WIDTH

• Each thread computes one 
element of Pdsub

m

kbx

by

k

m
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Tiled Matrix Multiplication Kernel
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1.  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2.  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;
6.  int Col = bx * TILE_WIDTH + tx;
7.  float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element

8.   for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[tx][ty] = Md[Row*Width + m*TILE_WIDTH + tx];
10. Nds[tx][ty] = Nd[(m*TILE_WIDTH + ty) * Width + Col)];

11. __syncthreads();
12.   for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[tx][k] * Nds[k][ty];
14. __syncthreads();

15.}
16.   Pd[Row*Width+Col] = Pvalue;

}
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Shared Memory and Threading
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• Each SM in Fermi has 64KB on-chip SRAM, partitioned 
into 48KB L1 cache and 16KB shared memory, or vice 
versa
– SM shared memory size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of 

shared memory. 
– Can potentially have up to 8 Thread Blocks actively executing 

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 
threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared 
memory usage per thread block, allowing 2 or 6 thread blocks 
active at the same time (Problem with earlier GPUs!)

• Using 16x16 tiling, we reduce the accesses to the global 
memory by a factor of 16
– A 150GB/s bandwidth can now support (150/4)*16 = 600 GFLOPS!
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ANY MORE QUESTIONS?
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