
©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 3: Blocking/Tiling for
Locality

1

Objective

• Reuse each data accessed from the global
memory multiple times
– Across threads – shared memory blocking
– Within a thread - register tiling

• Register tiling is also often used to re-use
computation results for increased efficiency.

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

2

Shared Memory Blocking Basic Idea

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Thread 1 Thread 2 …

in

Global Memory

Thread 1 Thread 2 …

Global Memory

in

On-chip Memory

3

Basic Concept of Blocking/Tiling

• In a congested traffic
system, significant
reduction of vehicles can
greatly improve the delay
seen by all vehicles
– Carpooling for commuters
– Blocking/Tiling for global

memory accesses
• drivers = threads,
• cars = data

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

4

Some computations are more
challenging to block/tile than others.
• Some carpools may

be easier than others
– More efficient if

neighbors are also
classmates or co-
workers

– Some vehicles may be
more suitable for
carpooling

• Similar variations exist
in blocking/tiling

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

5

Carpools need synchronization.

• Good – when people have similar schedule

• Bad – when people have very different schedule

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Worker A

Worker B
Time

sleep

sleep work

work

dinner

dinner

Worker A

Worker B
time

sleep

sleep work

work

dinner

party

6

Same with Blocking/Tiling

• Good – when threads have similar access timing

• Bad – when threads have very different timing
©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Thread 1

Thread 2
Time

Thread 1

Thread 2
time

…

7

Outline of Technique

• Identify a block/tile of global memory content that
are accessed by multiple threads

• Load the block/tile from global memory into on-
chip memory

• Have the multiple threads to access their data
from the on-chip memory

• Move on to the next block/tile

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

8

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Tiled Matrix Multiply
• Each row of Md is accessed by

multiple threads
• Problem: some threads can be

much further along than others
– An entire row may need to be in

on-chip memory
– Not enough on-chip memory for

large input matrices

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Thread 1 Thread 2

9

A Small Example

• Can we use two on-
chip memory locations
to reduce the number
of M accesses by the
two threads?
– Not if the two threads

can have very different
timing!

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

,

,

,0

,

,

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3 10

Every M and N Element is used exactly
twice in generating a 2X2 tile of P

P0,0

thread0,0

P1,0

thread1,0

P0,1

thread0,1

P1,1

thread1,1

M0,0 * N0,0 M0,0 * N1,0 M0,1 * N0,0 M0,1 * N1,0

M1,0 * N0,1 M1,0 * N1,1 M1,1 * N0,1 M1,1 * N1,1

M2,0 * N0,2 M2,0 * N1,2 M2,1 * N0,2 M2,1 * N1,2

M3,0 * N0,3 M3,0 * N1,3 M3,1 * N0,3 M3,1 * N1,3

Access
order

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

11

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3

Breaking Md and Nd into Tiles

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Phase 1

12

Pd1,0Md2,0

Md1,1

Md1,0Md0,0

Md0,1

Md3,0

Md2,1

Pd0,0

Md3,1 Pd0,1

Pd2,0Pd3,0

Nd0,3Nd1,3

Nd1,2

Nd1,1

Nd1,0Nd0,0

Nd0,1

Nd0,2

Pd1,1

Pd0,2 Pd2,2Pd3,2Pd1,2

Pd3,1Pd2,1

Pd0,3 Pd2,3Pd3,3Pd1,3

Breaking Md and Nd into Tiles
(cont.)

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Phase 2

13

Phase 1

Each phase uses one tile from Md and
one from Nd

Step 4 Step 5 Step 6

T0,0 Md0,0

↓
Mds0,0

Nd0,0

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

Md2,0

↓
Mds0,0

Nd0,2

↓
Nds0,0

PValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

T1,0 Md1,0

↓
Mds1,0

Nd1,0

↓
Nds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

Md3,0

↓
Mds1,0

Nd1,2

↓
Nds1,0

PValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

T0,1 Md0,1

↓
Mds0,1

Nd0,1

↓
Nds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

Md2,1

↓
Mds0,1

Nd0,3

↓
Nds0,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

T1,1 Md1,1

↓
Mds1,1

Nd1,1

↓
Nds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Md3,1

↓
Mds1,1

Nd1,3

↓
Nds1,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Phase 2

time
©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

time 14

Summary of Small Example

• Each tile contains four elements
• Two tiles loaded in each phase

– 8 memory loads
• Each phase performs 16 operations

– 8 mul, 8 add
• Each element is used twice
• Two floating point operations per load

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

15

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

16

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Tiled Multiply – Large Matrices
• Make sure that tiles are all

loaded in vertical patters from
the global memory

• Md data can then be accessed
from shared memory in
horizontal direction

First-order Size Considerations

• Assume
– TILE_WIDTH of 16 gives 16*16 = 256 threads
– A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float
loads from global memory for 256 * (2*16) =
8,192 mul/add operations.
– Memory bandwidth no longer a limiting factor
– Could use thread coarsening to further reduce traffic

• Each thread block can have up to 1024 threads
– Can use 32*32 tiles to further reduce traffic

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

17

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

18

Memory Access Pattern
(Corner Turning)

Md Nd

W
ID

TH

WIDTH

Md Nd

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

19

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel code

…

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

20

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M
T1 T2 T3 T4

Time Period 1

T1 T2 T3 T4

Time Period 2

Access
direction in
Kernel code

…

Loading a Tile

• All threads in a block participate
– Each thread loads one Md element and one Nd

element in based tiled code

• Assign the loaded element to each thread such
that the accesses within each warp is coalesced

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

21

CUDA Code – Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);

dim3 dimGrid(Width / TILE_WIDTH,

Width / TILE_WIDTH);

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

22

Md

Nd

Pd

Pdsub

TILE_WIDTH

WIDTHWIDTH

TILE_WIDTHTILE_WIDTH

bx

tx
01 TILE_WIDTH-12

0 1 2

by ty 2
1
0

TILE_WIDTH-1

2

1

0

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Tiled Multiply
• Each block computes one

square sub-matrix Pdsub of size
TILE_WIDTH

• Each thread computes one
element of Pdsub

m

kbx

by

k

m

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

23

Tiled Matrix Multiplication Kernel

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;
6. int Col = bx * TILE_WIDTH + tx;
7. float Pvalue = 0;
// Loop over the Md and Nd tiles required to compute the Pd element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {
// Coolaborative loading of Md and Nd tiles into shared memory
9. Mds[tx][ty] = Md[Row*Width + m*TILE_WIDTH + tx];
10. Nds[tx][ty] = Nd[(m*TILE_WIDTH + ty) * Width + Col)];

11. __syncthreads();
12. for (int k = 0; k < TILE_WIDTH; ++k)
13. Pvalue += Mds[tx][k] * Nds[k][ty];
14. __syncthreads();

15.}
16. Pd[Row*Width+Col] = Pvalue;

}

24

Shared Memory and Threading

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

• Each SM in Fermi has 64KB on-chip SRAM, partitioned
into 48KB L1 cache and 16KB shared memory, or vice
versa
– SM shared memory size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of

shared memory.
– Can potentially have up to 8 Thread Blocks actively executing

• This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared
memory usage per thread block, allowing 2 or 6 thread blocks
active at the same time (Problem with earlier GPUs!)

• Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16
– A 150GB/s bandwidth can now support (150/4)*16 = 600 GFLOPS!

25

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

26

	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 3: Blocking/Tiling for Locality
	Objective
	Shared Memory Blocking Basic Idea
	Basic Concept of Blocking/Tiling
	Some computations are more challenging to block/tile than others.
	Carpools need synchronization.
	Same with Blocking/Tiling
	Outline of Technique
	Tiled Matrix Multiply
	A Small Example
	Every M and N Element is used exactly twice in generating a 2X2 tile of P
	Breaking Md and Nd into Tiles
	Breaking Md and Nd into Tiles�(cont.)
	Each phase uses one tile from Md and one from Nd
	Summary of Small Example
	Tiled Multiply – Large Matrices
	First-order Size Considerations
	Memory Access Pattern�(Corner Turning)
	Memory Layout of a Matrix in C
	Memory Layout of a Matrix in C
	Loading a Tile
	CUDA Code – Kernel Execution Configuration
	Tiled Multiply
	Tiled Matrix Multiplication Kernel
	Shared Memory and Threading
	Any More Questions?

