Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 3: Blocking/Tiling for
Locality

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Objective

 Reuse each data accessed from the global
memory multiple times
— Across threads — shared memory blocking
— Within a thread - register tiling

e Register tiling Is also often used to re-use
computation results for increased efficiency.

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Shared Memory Blocking Basic ldea

In

Global Memory

In

©Wen-mei W. Hwu a
Berkeley, January 24-

Basic Concept of Blocking/Tiling

* |In a congested traffic
system, significant
reduction of vehicles can
greatly improve the delay
seen by all vehicles
— Carpooling for commuters

— Blocking/Tiling for global
memaory accesses
e drivers = threads,
e cars =data

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Some computations are more
challenging to block/tile than others.

e Some carpools may
be easier than others

— More efficient if
neighbors are also
classmates or co-
workers

— Some vehicles may be
more suitable for
carpooling

e Similar variations exist

In blocking/tiling

©Wen-mei W. Hwu and David Kirk/NVIDIA, =
Berkeley, January 24-25, 2011

Carpools need synchronization.

 Good - when people have similar schedule

Worker A sleep work dinner
Time
Worker B sleep work dinner

 Bad — when people have very different schedule

Worker A party sleep work
time
Worker B sleep work dinner

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Same with Blocking/Tiling

e Good — when threads have similar access timing

Thread 1
Time

Thread 1 \
time

Thread 2
 Bad — when threads have very different timing

©Wen-mei W. Hwu and David Kirk/NVIDIA, 7
Berkeley, January 24-25, 2011

Outline of Technigque

 |dentify a block/tile of global memory content that
are accessed by multiple threads

* Load the block/tile from global memory into on-
chip memory

« Have the multiple threads to access their data
from the on-chip memory

e Move on to the next block/tile

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Tiled Matrix Multiply

« Eachrow of Md Is accessed by
multiple threads

e Problem: some threads can be
much further along than others

— An entire row may need to be In
on-chip memory

— Not enough on-chip memory for

large input matrices
g P Fhread 1 Thread 2

0

«—r——>

©Wen-mei W. Hwu and David Kirk/NVIDIA,

IIIJ‘ |

Berkeley, January 24-25, 2011

A Small Example

e Can we use two on-
chip memory locations
to reduce the number
of M accesses by the
two threads?

— Not if the two threads
can have very different
timing!

©Wen-mei W. Hwu and David Kirk/NVIDIA, |
Berkeley, January 24-25, 2011

10

Every M and N Element is used exactly

Access
order

twice In generating a 2X2 tile of P

Po.o Py Po.1 Py 1
thread,, | thread,, | thread,, | thread,,
Moo* Noo | Moo* Q) [Mo1* Noo [Mp,* €,

@2 Noo [@Ap* Noo My Noy [Myg* Ny
MZ,O* I\|0,2 MZ,O* I\|1,2 Mz,l* NO,Z Mz,l* Nl 2
M3,O* N0,3 M3,O* N1,3 |\/|3’1* NO,3 M3,1* N13

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

11

Breaking Md and Nd into Tiles

Phase 1

Adawd: Ad>Md- IR, R,

Ad, ¥d,1d,Md,

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

12

Breaking Md and Nd into Tiles

(cont.)

Phase 2
e e ==
i N A R |
Ndg1d{ AdMd,

©Wen-mei W. Hwu and David Kirk/NVIDIA,

Berkeley, January 24-25, 2011

13

Each phase uses one tile from Md and

one from Nd
Phalse 1 Phase 2

TO,O Mdo’o Ndo'o P\/alueo’o += Md 2,0 NdO,Z Pvalueo’o +=

l l MdSO,O*NdSO,O + i i MdSO,O*NdSO,O +

MdSO,O Ndso’o MdSl,O*NdSO,l Mdso’o Ndso’o Mdsl,O*NdSO,l
Tio [Mdyg Nd; o5~PValue; o += Mds, Nd, , PValue, o +=

! ! MASs3#Nds; o+ | | ! Mds, o*Nds; o +

* *

Mds;o | Nds, Mds, ,*Nds; 4 Mds, Nds; Mds; o*Nds; 4
To1 | Mdg, Ndg , PdValue,; += Md, ; Ndjg 3 PdValue,; +=

i Y i ‘bMd 1*NdSO’0 + l l MdSO,l*NdSO,O +

Mdso,l Ml Mdsl, *NdSO,l Md50,1 NdSO . Mdsl’l*NdSO,l
T,, |Mdy, Noll,l\‘Pclvcalue}éil += |Mds; |Nd,; |Pdvalue,, +=

! ! Mdsg *Nds o+ | | | Mds, ;*Nds; g +

Mdsl,l NdSl,l MdSl’]_*NdS]_’l MdSl’l Nds]_,]_ Mdsl,l*Ndsl,l
©Wen-mei W. Hwu and David Kirk/NVIDIA, time 14

Berkeley, January 24-25, 2011

Summary of Small Example

e Each tile contains four elements

 Two tiles loaded in each phase
— 8 memory loads

 Each phase performs 16 operations
— 8 mul, 8 add

Each element Is used twice
Two floating point operations per load

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

15

Tiled Multiply — Large Matrices

Make sure that tiles are all
loaded in vertical patters from
the global memory

Md data can then be accessed
from shared memory In
horizontal direction

"

S

II} |

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkelev. Januarv 24-25 2011

First-order Size Considerations

e ASsume

— TILE_WIDTH of 16 gives 16*16 = 256 threads
— A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
 Each thread block perform 2*256 = 512 float

loads from global memory for 256 * (2*16) =
8,192 mul/add operations.

— Memory bandwidth no longer a limiting factor
— Could use thread coarsening to further reduce traffic

 Each thread block can have up to 1024 threads
— Can use 32*32 tiles to further reduce traffic

©Wen-mei W. Hwu and David Kirk/NVIDIA, 17
Berkeley, January 24-25, 2011

Memory Access Pattern
(Corner Turning)

Original
Access
Pattern
: g v Copy into
scratchpad
memory
= 1IN
Tiled
Access berf
Pattern errorm
multiplication
with scratchpad
values
©Wen-mei W. Hwu and David Kirk/NVIDIA, | 18

Berkeley, January 24-25, 2011

Memory Layout of a Matrix in C

ACCeSS

directionin

Kernel code
Time Period 1 Time Period 2
T, Ty T T[Ty T, T3 Ty

0,0 1,0

MOl Mll M21 M31 MOZ M12 M22 M32 MOS M13 M23 M33

©Wen-mei W. Hwu and David Kirk/NVIDIA,

Berkeley, January 24-25, 2011

19

Memory Layout of a Matrix in C

ACCess

directionin

Kernel code

Time Period 2
T, T, T, T,
A A A A
Tifne Period 1
T, T, T, T,

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

Loading a Tile

» All threads in a block participate

— Each thread loads one Md element and one Nd
element In based tiled code

e Assign the loaded element to each thread such
that the accesses within each warp Is coalesced

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

21

CUDA Code — Kernel Execution
Configuration

// Setup the execution configuration

dim3 dimBlock(TILE WIDTH, TILE_WIDTH);

dim3 dimGrid(Width ~/ TILE WIDTH,
Width /7 TILE WIDTH);

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

22

Tiled Multiply

Each computes one

square sub-matrix Pd,, of size
TILE_WIDTH

« Each thread computes one
element of Pd,

X
012 TILE_WIDTH-1

. |

TILE_WIDT

23

©Wen-mei W. Hwu and David Kirk/NVIDIA, < > < T

Berkeley, January 24-25, 2011

Tiled Matrix Multiplication Kernel

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)

{

1. _ shared _ float MdsS[TILE_WIDTH][TILE_WIDTH];
2. _ shared float Nds[TILE WIDTH][TILE_WIDTH];
3. 1nt bx = blockldx.x; 1nt by = blockldx.y;

4. 1Int tx = threadldx.x; Int ty = threadldx.y;

// ldentify the row and column of the Pd element to work on

5. 1nt Row = by * TILE_WIDTH + ty;

6. 1nt Col = bx * TILE WIDTH + tXx;

7. Tloat Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element
8. for (int m = 0; m < Wadth/TILE WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[tx][ty] = Md[Row*Width + m*TILE_WIDTH + txX];

10. Nds[tx][ty] = NA[(m*TILE_WIDTH + ty) * Width + Col)];
11. __syncthreads();

12. for (int k = 0; k < TILE WIDTH; ++k)

13. Pvalue += Mds[tx][Kk] * Nds[k][ty];

14. __syncthreads();

15.%}

16. Pd[Row*Width+Col] = Pvalue;
1

Shared Memory and Threading

« Each SM in Fermi has 64KB on-chip SRAM, partitioned
iInto 48KB L1 cache and 16KB shared memory, or vice
versa

— SM shared memory size is implementation dependent!

— For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of
shared memory.
— Can potentially have up to 8 Thread Blocks actively executing

* This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256
threads per block)

— The next TILE_WIDTH 32 would lead to 2*32*32*4B= 8KB shared
memory usage per thread block, allowing 2 or 6 thread blocks
active at the same time (Problem with earlier GPUSs!)

e Using 16x16 tiling, we reduce the accesses to the global
memory by a factor of 16

— A 150GB/s bandwidth can now support (150/4)*16 = 600 GFLOPS!
25

A

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

26

	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 3: Blocking/Tiling for Locality
	Objective
	Shared Memory Blocking Basic Idea
	Basic Concept of Blocking/Tiling
	Some computations are more challenging to block/tile than others.
	Carpools need synchronization.
	Same with Blocking/Tiling
	Outline of Technique
	Tiled Matrix Multiply
	A Small Example
	Every M and N Element is used exactly twice in generating a 2X2 tile of P
	Breaking Md and Nd into Tiles
	Breaking Md and Nd into Tiles�(cont.)
	Each phase uses one tile from Md and one from Nd
	Summary of Small Example
	Tiled Multiply – Large Matrices
	First-order Size Considerations
	Memory Access Pattern�(Corner Turning)
	Memory Layout of a Matrix in C
	Memory Layout of a Matrix in C
	Loading a Tile
	CUDA Code – Kernel Execution Configuration
	Tiled Multiply
	Tiled Matrix Multiplication Kernel
	Shared Memory and Threading
	Any More Questions?

