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Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 5: Advanced Data 
Optimizations



Objective

• Apply tiling, thread coarsening, and data layout 
transformations to one kernel

• Understand the practical use of these techniques
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Data Reuse in Matrix-Matrix 
Multiplciation Revisited
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Data Reuse in Matrix-Matrix 
Multiplciation Revisited (cont.)

A

B

C Intermediate 
results computed 
by T1; stored in 
registers

C
C
C

Accessed by T1

Accessed by T1
Accessed by T2
Accessed by T3
Accessed by T4
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Data Reuse in Matrix-Matrix 
Multiplciation Revisited (cont.)

• Only four elements of 
A and four elements 
of B is needed to 
calculate one step for 
a 16-element tile of C

B

C

A
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Data Reuse in Matrix-Matrix 
Multiplciation Revisited (cont.)

• The C tile does not 
need to be square

• This is a 4X2 tile
– 4 elements of A and 2 

elements of B are 
needed for each step

B

C

A
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Data Reuse in Matrix-Matrix 
Multiplciation Revisited (cont.)

• Step 2…

B

C

A
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Data Reuse in Matrix-Matrix 
Multiplciation Revisited (cont.)

• At each step
– For 4X2 only 6 

elements need to be 
loaded for all 8 threads 
to make progress

– For 4X4, 8 elements 
for all 16 threads

B

C

A
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But, how about the kernel we saw.
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__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1.  __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];

2.  __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3.  int bx = blockIdx.x;  int by = blockIdx.y;

4.  int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5.  int Row = by * TILE_WIDTH + ty;

6.  int Col = bx * TILE_WIDTH + tx;

7.  float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8.   for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[tx][ty] = Md[Row*Width + m*TILE_WIDTH + tx];

10. Nds[tx][ty] = Nd[(m*TILE_WIDTH + ty) * Width + Col)];

11. __syncthreads();

12.   for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[tx][k] * Nds[k][ty];

14. __synchthreads();

15.}

16.   Pd[Row*Width+Col] = Pvalue;

}

Each thread calculates 
TILE_WIDTH steps of a 
C element

Each thread loads 
1 element of A and 
1 element of B



In the kernel of the previous slide

• T^2 elements of A and T^2 element of B are 
loaded to calculate T steps for T^2 elements of C

• According to our analysis, we can use much 
smaller amount of shared memory by 
– Loading T element of A and T element of B to 

claculate 1 step for T^2 elements of C
– Or loading TA elements of A and TB elements of B to 

calculate 1 step for TA*TB elements of C (rectangular 
matrix)

– So, why didn’t we do so?

©Wen-mei W. Hwu and David Kirk/NVIDIA,         
Berkeley, January 24-25, 2010



Synchronization Overhead

• We need to  call __synchthreads() in the inner 
loop of each thread. In each iteration
– only a subset of threads load A and B elements 

(divergence)
– Call __synchthreads()
– All threads calculate one step of the inner product
– Call __synchtrheads()
– Go to the next iteration

• Even though __synchtrheads() is a very efficient 
function, such intensive use is still going to hurt
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A

A somewhat different approach
Optimization 1: thread coarsening

• Have each thread to calculate a horizontal 
subset of C elements 

• Data loaded in A can be reused through registers
– Register tiling

B

C

Load 1 value from 
A into r1

Load 4 (TB)values from 
B. Say b1~b4

r1 can be reused 
to compute 4 
intermediate 
results for C
C[0] += r1 * b1;
C[1] += r1*  b2;
C[2] += r1*  b3;
C[3] += r1*  b4;
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Optimization 2:
Shared memory tiling

• Multiple threads collaborate to load TB B 
elements into shared memory

A

B

C

T1-T4 cooperatively 
load 4 values from B, 
b1~b4 into shared 
memory so T1-T4 
can all use them

Intermediate results 
computed by T1; 
stored in registers

C
C
C

Accessed by T1
Accessed by T2
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In one iteration, each thread

• loads one A element into register, accesses TB B 
elements from shared memory
– Calculates one step for 1*TB C elements
– TB ~16 in practice

A

B

C

T1-T4 cooperatively 
load 4 values from B, 
b1~b4 into shared 
memory so T1-T4 
can all use them

Intermediate results 
computed by T1; 
stored in registers

C
C
C

Accessed by T1
Accessed by T2
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In one iteration, each block

• Loads TA A elements into registers, loads TB B 
elements into shared memory
– TA is number of threads in thread block (64 or more in 

practice)
– TB is number of threads folded into one thread in 

thread coarsening (16 or more in practice)

• However, loading of B will involve only a subset 
of threads (divergence)
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A more balanced approach, in each 
iteration

• All threads in a block collaborate to load a TBxK 
tile of B into shared memory
– K is set so that TA = TB*K
– Every thread loads one B element, no divergence

• Each thread loads K A elements into registers

• Each thread calculates K steps for TB C 
elements
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Summary
• Each block has TA threads
• Each thread coarsened by TB times
• Each thread loads

– One B element
– K =TA/TB A elements
– To calculate K steps of TB C elements 

A

B

C
C
C
C

Accessed by T1
Accessed by T2TA

TB
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For a toy example
• Each block has 8 threads
• Each thread coarsened by 4 times
• Each thread loads

– One B element
– 8/4=2  A elements
– To calculate 2 steps of 4 C elements 

A

B

C
C
C
C

Accessed by T1
Accessed by T2TA

TB

C
C
C
C
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For GTX280 (Volkov & Demmel )
• Each block has 64 threads
• Each thread coarsened by 16 times
• Each thread loads

– One B element
– 64/16=4  A elements
– To calculate 4 steps of 16 C elements 

A

B

C
C
C
C

TA

TB

C
C
C
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A Comparative Analysis

• Tiled MM introduced earlier:
– Each thread block computes 32x32=1024 results
– Use 9 KB on-chip memory (register + shared memory)

• Register tiled version of sgemm:
– Each thread block computes 64x16=1024 results
– Use only 4 ¼ KB on-chip memory

• Similar degree of reuse; ~2X more efficient than tiled MM
Tiling algorithm # of reuse per

data in A
# of reuse per 
data in B

# of data 
computed per 
block in C

Shared 
memory usage 
per block

Register usage 
per TB

Performance 
on GTX280 in 
GFLOP/s

Register 
tiled MM 16 64 16x64 4x16x4 

=256Bytes
64x16x4 

=4KB ~430

Tiled MM 32 32 32x32 32x32x4x2
=8KBytes 32x32=1KB <300
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Data Layout – For C (row major)

• Loading B into shared memory is easily 
coalesced with the 16X4 tile 

• Loading A into registers in not coalesced
– Transpose A for coalescing

A

B

C
C
C
C

TB

C
C
C
C

TA
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Data Layout for FORTRAN

• Column major layout
• A accesses are coalesced
• B needs to be transposed
• C may need to be transposed

A

B

TA

TB
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DRAM Bank Organization

• Each core array has 
about 1M bits

• Each bit is stored in a 
tiny capacitor, made 
of one transistor

Memory Cell
Core Array

Row
Decoder

Sense Amps

Column Latches

Mux

Row
Addr

Column
Addr

Off-chip Data

Wide

Narrow
Pin Interface



A very small (8x2 bit) DRAM Bank
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DRAM core arrays are slow.

• Reading from a cell in the core array is a very 
slow process
– DDR: Core speed = ½ interface speed
– DDR2/GDDR3: Core speed = ¼ interface speed
– DDR3/GDDR4: Core speed = ⅛ interface speed
– … likely to be worse in the future

de
co

de

To sense amps 

A very small capacitance 
that stores a data bit

About 1000 cells connected to 
each vertical line  



DRAM Bursting.

• For DDR{2,3} SDRAM 
cores clocked at 1/N 
speed of the interface:

– Load (N × interface width) of 
DRAM bits from the same 
row at once to an internal 
buffer, then transfer in N 
steps at interface speed

– DDR2/GDDR3: buffer 
width = 4X interface width



DRAM Bursting
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DRAM Bursting
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DRAM Bursting for the 8x2 Bank

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana, 
Illinois, August 2-5, 2010

time

Address bits 
to decoder

Core Array access delay
2 bits
to pin

2 bits
to pin

Non-burst timing

Burst timing

Modern DRAM systems are designed to 
be always accessed in burst mode. Burst 
bytes are transferred but discarded when 
accesses are not to sequential locations.



Multiple DRAM Banks
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DRAM Bursting for the 8x2 Bank
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time

Address bits 
to decoder

Core Array access delay
2 bits
to pin

2 bits
to pin

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time 



First-order Look at the GPU off-chip 
memory subsystem

• nVidia GTX280 GPU: 
– Peak global memory bandwidth = 141.7GB/s

• Global memory (GDDR3) interface @ 1.1GHz
– (Core speed @ 276Mhz)
– For a typical 64-bit interface, we can sustain only 

about 17.6 GB/s (Recall DDR - 2 transfers per clock)
– We need a lot more bandwith (141.7 GB/s) – thus 8 

memory channels



Multiple Memory Channels

• Divide the memory address space into N parts
– N is number of memory channels
– Assign each portion to a channel
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Memory Controller Organization of a 
Many-Core Processor

• GTX280: 30 Stream Multiprocessors (SM) 
connected to 8-channel DRAM controllers 
through interconnect
– DRAM controllers are interleaved
– Within DRAM controllers (channels), DRAM 

banks are interleaved for incoming memory 
requests

– We approximate its DRAM channel/bank 
interleaving scheme through micro-benchmarking
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Presenter
Presentation Notes
FIXME Channels are also interleaved



Back to the Big Picture

• Each global memory access is made to a 
memory location with an address
– Some bits will determine the memory channel used
– Some bits will determine the DRAM bank used
– Some bits will determine the position within a burst

• When adjacent threads in a warp access words 
in a burst, the accesses are coalesced. 
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Channel Bank BurstOther bits



ANY MORE QUESTIONS?
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