
©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 5: Advanced Data
Optimizations

Objective

• Apply tiling, thread coarsening, and data layout
transformations to one kernel

• Understand the practical use of these techniques

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Data Reuse in Matrix-Matrix
Multiplciation Revisited

A

B

C
C
C
C

Accessed by T1
Accessed by T2

Accessed by T1, T2, T3, T4

Accessed by T3
Accessed by T4

Data Reuse in Matrix-Matrix
Multiplciation Revisited (cont.)

A

B

C Intermediate
results computed
by T1; stored in
registers

C
C
C

Accessed by T1

Accessed by T1
Accessed by T2
Accessed by T3
Accessed by T4

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Data Reuse in Matrix-Matrix
Multiplciation Revisited (cont.)

• Only four elements of
A and four elements
of B is needed to
calculate one step for
a 16-element tile of C

B

C

A

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Data Reuse in Matrix-Matrix
Multiplciation Revisited (cont.)

• The C tile does not
need to be square

• This is a 4X2 tile
– 4 elements of A and 2

elements of B are
needed for each step

B

C

A

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Data Reuse in Matrix-Matrix
Multiplciation Revisited (cont.)

• Step 2…

B

C

A

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Data Reuse in Matrix-Matrix
Multiplciation Revisited (cont.)

• At each step
– For 4X2 only 6

elements need to be
loaded for all 8 threads
to make progress

– For 4X4, 8 elements
for all 16 threads

B

C

A

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

But, how about the kernel we saw.

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];

2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

3. int bx = blockIdx.x; int by = blockIdx.y;

4. int tx = threadIdx.x; int ty = threadIdx.y;

// Identify the row and column of the Pd element to work on

5. int Row = by * TILE_WIDTH + ty;

6. int Col = bx * TILE_WIDTH + tx;

7. float Pvalue = 0;

// Loop over the Md and Nd tiles required to compute the Pd element

8. for (int m = 0; m < Width/TILE_WIDTH; ++m) {

// Coolaborative loading of Md and Nd tiles into shared memory

9. Mds[tx][ty] = Md[Row*Width + m*TILE_WIDTH + tx];

10. Nds[tx][ty] = Nd[(m*TILE_WIDTH + ty) * Width + Col)];

11. __syncthreads();

12. for (int k = 0; k < TILE_WIDTH; ++k)

13. Pvalue += Mds[tx][k] * Nds[k][ty];

14. __synchthreads();

15.}

16. Pd[Row*Width+Col] = Pvalue;

}

Each thread calculates
TILE_WIDTH steps of a
C element

Each thread loads
1 element of A and
1 element of B

In the kernel of the previous slide

• T^2 elements of A and T^2 element of B are
loaded to calculate T steps for T^2 elements of C

• According to our analysis, we can use much
smaller amount of shared memory by
– Loading T element of A and T element of B to

claculate 1 step for T^2 elements of C
– Or loading TA elements of A and TB elements of B to

calculate 1 step for TA*TB elements of C (rectangular
matrix)

– So, why didn’t we do so?

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Synchronization Overhead

• We need to call __synchthreads() in the inner
loop of each thread. In each iteration
– only a subset of threads load A and B elements

(divergence)
– Call __synchthreads()
– All threads calculate one step of the inner product
– Call __synchtrheads()
– Go to the next iteration

• Even though __synchtrheads() is a very efficient
function, such intensive use is still going to hurt

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

A

A somewhat different approach
Optimization 1: thread coarsening

• Have each thread to calculate a horizontal
subset of C elements

• Data loaded in A can be reused through registers
– Register tiling

B

C

Load 1 value from
A into r1

Load 4 (TB)values from
B. Say b1~b4

r1 can be reused
to compute 4
intermediate
results for C
C[0] += r1 * b1;
C[1] += r1* b2;
C[2] += r1* b3;
C[3] += r1* b4;

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Optimization 2:
Shared memory tiling

• Multiple threads collaborate to load TB B
elements into shared memory

A

B

C

T1-T4 cooperatively
load 4 values from B,
b1~b4 into shared
memory so T1-T4
can all use them

Intermediate results
computed by T1;
stored in registers

C
C
C

Accessed by T1
Accessed by T2

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

In one iteration, each thread

• loads one A element into register, accesses TB B
elements from shared memory
– Calculates one step for 1*TB C elements
– TB ~16 in practice

A

B

C

T1-T4 cooperatively
load 4 values from B,
b1~b4 into shared
memory so T1-T4
can all use them

Intermediate results
computed by T1;
stored in registers

C
C
C

Accessed by T1
Accessed by T2

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

In one iteration, each block

• Loads TA A elements into registers, loads TB B
elements into shared memory
– TA is number of threads in thread block (64 or more in

practice)
– TB is number of threads folded into one thread in

thread coarsening (16 or more in practice)

• However, loading of B will involve only a subset
of threads (divergence)

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

A more balanced approach, in each
iteration

• All threads in a block collaborate to load a TBxK
tile of B into shared memory
– K is set so that TA = TB*K
– Every thread loads one B element, no divergence

• Each thread loads K A elements into registers

• Each thread calculates K steps for TB C
elements

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Summary
• Each block has TA threads
• Each thread coarsened by TB times
• Each thread loads

– One B element
– K =TA/TB A elements
– To calculate K steps of TB C elements

A

B

C
C
C
C

Accessed by T1
Accessed by T2TA

TB

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

For a toy example
• Each block has 8 threads
• Each thread coarsened by 4 times
• Each thread loads

– One B element
– 8/4=2 A elements
– To calculate 2 steps of 4 C elements

A

B

C
C
C
C

Accessed by T1
Accessed by T2TA

TB

C
C
C
C

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

For GTX280 (Volkov & Demmel)
• Each block has 64 threads
• Each thread coarsened by 16 times
• Each thread loads

– One B element
– 64/16=4 A elements
– To calculate 4 steps of 16 C elements

A

B

C
C
C
C

TA

TB

C
C
C
C

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

A Comparative Analysis

• Tiled MM introduced earlier:
– Each thread block computes 32x32=1024 results
– Use 9 KB on-chip memory (register + shared memory)

• Register tiled version of sgemm:
– Each thread block computes 64x16=1024 results
– Use only 4 ¼ KB on-chip memory

• Similar degree of reuse; ~2X more efficient than tiled MM
Tiling algorithm # of reuse per

data in A
of reuse per
data in B

of data
computed per
block in C

Shared
memory usage
per block

Register usage
per TB

Performance
on GTX280 in
GFLOP/s

Register
tiled MM 16 64 16x64 4x16x4

=256Bytes
64x16x4

=4KB ~430

Tiled MM 32 32 32x32 32x32x4x2
=8KBytes 32x32=1KB <300

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Data Layout – For C (row major)

• Loading B into shared memory is easily
coalesced with the 16X4 tile

• Loading A into registers in not coalesced
– Transpose A for coalescing

A

B

C
C
C
C

TB

C
C
C
C

TA

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

Data Layout for FORTRAN

• Column major layout
• A accesses are coalesced
• B needs to be transposed
• C may need to be transposed

A

B

TA

TB

© Wen-mei Hwu and S. J. Patel, 2005
ECE 511, University of Illinois

DRAM Bank Organization

• Each core array has
about 1M bits

• Each bit is stored in a
tiny capacitor, made
of one transistor

Memory Cell
Core Array

Row
Decoder

Sense Amps

Column Latches

Mux

Row
Addr

Column
Addr

Off-chip Data

Wide

Narrow
Pin Interface

A very small (8x2 bit) DRAM Bank

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

de
co

de

0 1 1

Sense amps

Mux

DRAM core arrays are slow.

• Reading from a cell in the core array is a very
slow process
– DDR: Core speed = ½ interface speed
– DDR2/GDDR3: Core speed = ¼ interface speed
– DDR3/GDDR4: Core speed = ⅛ interface speed
– … likely to be worse in the future

de
co

de

To sense amps

A very small capacitance
that stores a data bit

About 1000 cells connected to
each vertical line

DRAM Bursting.

• For DDR{2,3} SDRAM
cores clocked at 1/N
speed of the interface:

– Load (N × interface width) of
DRAM bits from the same
row at once to an internal
buffer, then transfer in N
steps at interface speed

– DDR2/GDDR3: buffer
width = 4X interface width

DRAM Bursting

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

de
co

de

0 1 0

Sense amps

Mux

DRAM Bursting

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

de
co

de

0 1 1

Sense amps and buffer

Mux

DRAM Bursting for the 8x2 Bank

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

time

Address bits
to decoder

Core Array access delay
2 bits
to pin

2 bits
to pin

Non-burst timing

Burst timing

Modern DRAM systems are designed to
be always accessed in burst mode. Burst
bytes are transferred but discarded when
accesses are not to sequential locations.

Multiple DRAM Banks

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

de
co

de

Sense amps

Mux
de

co
de

Sense amps

Mux

0 1 10

Bank 0 Bank 1

DRAM Bursting for the 8x2 Bank

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

time

Address bits
to decoder

Core Array access delay
2 bits
to pin

2 bits
to pin

Single-Bank burst timing, dead time on interface

Multi-Bank burst timing, reduced dead time

First-order Look at the GPU off-chip
memory subsystem

• nVidia GTX280 GPU:
– Peak global memory bandwidth = 141.7GB/s

• Global memory (GDDR3) interface @ 1.1GHz
– (Core speed @ 276Mhz)
– For a typical 64-bit interface, we can sustain only

about 17.6 GB/s (Recall DDR - 2 transfers per clock)
– We need a lot more bandwith (141.7 GB/s) – thus 8

memory channels

Multiple Memory Channels

• Divide the memory address space into N parts
– N is number of memory channels
– Assign each portion to a channel

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Channel
0

Channel
1

Channel
2

Channel
3

Bank Bank Bank Bank

Memory Controller Organization of a
Many-Core Processor

• GTX280: 30 Stream Multiprocessors (SM)
connected to 8-channel DRAM controllers
through interconnect
– DRAM controllers are interleaved
– Within DRAM controllers (channels), DRAM

banks are interleaved for incoming memory
requests

– We approximate its DRAM channel/bank
interleaving scheme through micro-benchmarking

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Presenter
Presentation Notes
FIXME Channels are also interleaved

Back to the Big Picture

• Each global memory access is made to a
memory location with an address
– Some bits will determine the memory channel used
– Some bits will determine the DRAM bank used
– Some bits will determine the position within a burst

• When adjacent threads in a warp access words
in a burst, the accesses are coalesced.

©Wen-mei W. Hwu and David Kirk/NVIDIA Urbana,
Illinois, August 2-5, 2010

Channel Bank BurstOther bits

ANY MORE QUESTIONS?

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2010

	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 5: Advanced Data Optimizations
	Objective
	Data Reuse in Matrix-Matrix Multiplciation Revisited
	Data Reuse in Matrix-Matrix Multiplciation Revisited (cont.)
	Data Reuse in Matrix-Matrix Multiplciation Revisited (cont.)
	Data Reuse in Matrix-Matrix Multiplciation Revisited (cont.)
	Data Reuse in Matrix-Matrix Multiplciation Revisited (cont.)
	Data Reuse in Matrix-Matrix Multiplciation Revisited (cont.)
	But, how about the kernel we saw.
	In the kernel of the previous slide
	Synchronization Overhead
	A somewhat different approach�Optimization 1: thread coarsening
	Optimization 2:� Shared memory tiling
	In one iteration, each thread
	In one iteration, each block
	A more balanced approach, in each iteration
	Summary
	For a toy example
	For GTX280 (Volkov & Demmel)
	A Comparative Analysis
	Data Layout – For C (row major)
	Data Layout for FORTRAN
	DRAM Bank Organization
	A very small (8x2 bit) DRAM Bank
	DRAM core arrays are slow.
	DRAM Bursting.
	DRAM Bursting
	DRAM Bursting
	DRAM Bursting for the 8x2 Bank
	Multiple DRAM Banks
	DRAM Bursting for the 8x2 Bank
	First-order Look at the GPU off-chip memory subsystem
	Multiple Memory Channels
	Memory Controller Organization of a Many-Core Processor
	Back to the Big Picture
	ANY MORE QUESTIONS?

