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Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 6: Input Binning
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Objective

• To understand how data scalability problems in 
gather parallel execution motivate input binning

• To learn basic input binning techniques
• To understand common tradeoffs in input binning 
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Scatter to Gather Transformation

Thread 1 Thread 2 …
in

out
Thread 1 Thread 2 …

in

out
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However
• Input tend to be much less regular than output

– It may be difficult for each thread to efficiently locate 
all inputs relevant to its output

– Or, to efficiently exclude all inputs irrelevant to its 
output

• In a naïve arrangement, all threads may have to 
process all inputs to decide if each input is 
relevant to its output
– This makes execution time scale poorly with data set 

size – data scalability problem
– Especially a problem for many-cores designed to 

process large data sets
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DCS Algorithm for Electrostatic Potentials
Revisited

• At each grid point, sum 
the electrostatic 
potential from all atoms
– All threads read all inputs

• Highly data-parallel
• But has quadratic 

complexity
– Number of grid points ×

number of atoms
– Both proportional to volume
– Poor data scalability in 

terms of volume
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Same scalability
among all cutoff
implementations

Scalability and Performance of different algorithms for calculating 
electrostatic potential map.

Direct Summation is accurate but has 
poor data scalability
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Algorithm for Electrostatic Potentials
With a Cutoff

• Ignore atoms beyond a 
cutoff distance, rc
– Typically 8Å–12Å
– Long-range potential may 

be computed separately

• Number of atoms within 
cutoff distance is 
roughly constant 
(uniform atom density)
– 200 to 700 atoms within 

8Å–12Å cutoff sphere for 
typical biomolecular 
structures
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Cut-off Summation 

• With fixed partial charge qi, electrostatic potential 
V at position r over all N atoms: 

, where

©Wen-mei W. Hwu and David Kirk/NVIDIA          
Berkeley, January 24-25, 2011

8



Implementation Challenge

• For each tile of grid points, we need to identify 
the set of atoms that need to be examined
– One could naively examine all atoms and only use the 

ones whose distance is within the given range 
– But this examination still takes time, and brings the 

time complexity right back to 
• number of atoms * number of grid points

– Each thread needs to avoid examining the atoms 
outside the range of its grid point(s)
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Binning

• A process that groups data to form a chunk 
called bin

• Each bin collectively represents a property for 
data in the bin

• Helps problem solving due to data coarsening
• Uniform bin arrays, Variable bins, KD Trees, …
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Binning for Cut-Off Potential
• Divide the simulation volume with non-

overlapping uniform cubes
• Every atom in the simulation volume falls into a 

cube based on its spatial location
– Bins represent location property of atoms

• After binning, each cube has a unique index in 
the simulation space for easy parallel access
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Spatial Sorting Using Binning

• Presort atoms into bins
by location in space

• Each bin holds several 
atoms

• Cutoff potential only 
uses bins within rc
– Yields a linear complexity 

cutoff potential algorithm
– Some atoms will be 

examined by a thread but 
not used
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Terminology

• Bin Size
– The size of the bin cubes that partition the simulation 

volume
– The bigger the bin size, the more the atoms that will 

fall into each bin

• Bin Capacity
– The number of atoms that can be accommodated by 

each bin in the array implementation
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Bin Capacity Considerations

• Capacity of atom bins needs to be balanced
– Too large – many dummy atoms in bins
– Too small – some atoms will not fit into bins
– Target bin capacity to cover more than 95% or atoms

• Place all atoms that do not fit into bins into an 
overflow bin
– Use a CPU sequential algorithm to calculate their 

contributions to the energy grid lattice points.
– CPU and GPU can do potential calculations in parallel
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Bin Design
• Uniform sized/capacity bins allow array implementation

– And the relative offset list approach

• Bin capacity should be big enough to contain all the 
atoms that fall into a bin
– Cut-off will screen away atoms that weren’t processed
– Performance penalty if too many are screened away
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Going from DCS Kernel to 
Large Bin Cut-off Kernel

• Adaptation of techniques from the direct Coulomb 
summation kernel for a cutoff kernel

• Atoms are stored in constant memory as with DCS kernel
• CPU loops over potential map regions that are (24Å)3 in 

volume (cube containing cutoff sphere)
– Each map region requires only one large bin of atoms
– For each map region, atoms in the corresponding large bin are 

appended to the constant memory atom buffer until full, then 
GPU kernel is launched

– Host continue to reload constant memory and launch GPU 
kernels until all atoms in the corresponding large bin are 
consumed
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Large Bin Design Concept

• Map regions are (24Å)3 in volume
• Regions are sized large enough to provide the 

GPU enough work in a single kernel launch
– (48 lattice points)3 for lattice with 0.5Å spacing
– (20 atoms)3 on average for each large bin

• Bin size and capacity are designed to allow each 
kernel launch to cover enough lattice points to 
justify the kernel launch overhead and fully utilize 
the GPU hardware
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Large Bin Cut-off Kernel Code
static __constant__ float4 atominfo[MAXATOMS];
__global__ static void mgpot_shortrng_energy(…) {
[…]
for (n = 0;  n < natoms;  n++) {
float dx = coorx - atominfo[n].x;
float dy = coory - atominfo[n].y;
float dz = coorz - atominfo[n].z;
float q = atominfo[n].w;
float dxdy2 = dx*dx + dy*dy;
float r2 = dxdy2 + dz*dz;
if (r2 < CUTOFF2) {

float gr2 = GC0 + r2*(GC1 + r2*GC2); 
float r_1 = 1.f/sqrtf(r2);
accum_energy_z0 += q * (r_1 - gr2);

}
…

©Wen-mei W. Hwu and David Kirk/NVIDIA          
Berkeley, January 24-25, 2011

18



©Wen-mei W. Hwu and David Kirk/NVIDIA          
Berkeley, January 24-25, 2011

Large-bin Cutoff Kernel Evaluation 

• 6× speedup relative to fast CPU version
• Work-inefficient

– Coarse spatial hashing into (24Å)3 bins
– Only 6.5% of the atoms a thread tests are within 

the cutoff distance
• Small-bin designs improve work efficiency but 

requires more sophisticated kernel code
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Small-bin Kernels –
Improving Work Efficiency

• Thread block examines atom bins 
up to the cutoff distance
– Use a sphere of bins
– All threads in a block scan the same 

bins and atoms
• No hardware penalty for multiple 

simultaneous reads of the same address
• Simplifies fetching of data

– The sphere has to be big enough to 
cover all grid point at corners

– There will be a small level of  
divergence

• Not all grid points processed by a thread 
block relate to all atoms in a bin the 
same way

• (A within cut-off distance of N but outside 
cut-off of M)
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The Neighborhood is a volume

• Calculating and 
specifying all bin 
indexes of the 
sphere can be 
quite complex
– Rough 

approximations 
reduce efficiency

©Wen-mei W. Hwu and David Kirk/NVIDIA          
Berkeley, January 24-25, 2011

21



Neighborhood Offset List
(Pre-calculated)

• A list of relative offsets enumerating the bins that 
are located within the cutoff distance for a given 
location in the simulation volume

• Detection of surrounding atoms becomes 
realistic for output grid points
– By visiting bins in the neighborhood offset list and 

iterating atoms they contain

center (0, 0)

(1, 2)

not included

cutoff distance

(-1, -1)
a bin in the 
neighborhood list
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Pseudo Code of an Implementation
// 1. binning
for each atom in the simulation volume,

index_of_bin := atom.addr / BIN_SIZE
bin[index_of_bin] += atom

// 2. generate the neighborhood offset list
for each c from -cutoff to cutoff,

if distance(0, c) < cutoff,
nlist += c

// 3. do the computation
for each point in the output grid,

index_of_bin := point.addr / BIN_SIZE
for each offset in nlist,

for each atom in bin[index_of_bin + offset],
point.potential += atom.charge / (distance from point to atom)
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Performance

• O(MN’) where M and N’ are the number of output 
grid points and atoms in the neighborhood offset 
list, respectively
– In general, N’ is small compared to the number of all 

atoms
• Works well if the distribution of atoms is uniform

©Wen-mei W. Hwu and David Kirk/NVIDIA          
Berkeley, January 24-25, 2011

24



Details on Small Bin Design
• For 0.5Å lattice spacing, a 

(4Å)3 cube of the potential 
map is computed by each 
thread block
– 8×8×8 potential map points
– 128 threads per block       

(4 points/thread)
– 34% of examined atoms 

are within cutoff distance
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More Design Considerations for the 
Cutoff Kernel

• High memory throughput to atom data essential
– Group threads together for locality
– Fetch bins of data into shared memory
– Structure atom data to allow fetching

• After taking care of memory demand, optimize to 
reduce instruction count
– Loop and instruction-level optimization
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Another thread block runs
while this one waits

Tiling Atom Data
• Shared memory used to reduce Global 

Memory bandwidth consumption
– Threads in a thread block collectively load one bin 

at a time into shared memory
– Once loaded, threads scan atoms in shared 

memory
– Reuse: Loaded bins used 128 times

Threads individually
compute potentials

using bin in shared mem

Collectively
load next

bin

Write bin to
shared

memoryS
us

pe
nd Data returned 

from global 
memory R

ea
dy

Time

Execution cycle of a thread block
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Coalesced Global Memory Access 
to Atom Data

• Full global memory bandwidth only with 64-
byte, 64-byte-aligned memory accesses
– Each bin is exactly 128 bytes
– Bins stored in a 3D array
– 32 threads in each block load one bin into shared 

memory, then processed by all threads in the block
• 128 bytes = 8 atoms (x,y,z,q)

– Nearly uniform density of atoms in typical systems
• 1 atom per 10 Å3

– Bins hold atoms from (4Å)3 of space (example)
– Number of atoms in a bin varies

• For water test systems, 5.35 atoms in a bin on average
• Some bins overfull
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Handling Overfull Bins

• In typical use, 2.6% of atoms exceed bin capacity
• Spatial sorting puts these into a list of extra 

atoms
• Extra atoms processed by the CPU

– Computed with CPU-optimized algorithm
– Takes about 66% as long as GPU computation
– Overlapping GPU and CPU computation yields in 

additional speedup
– CPU performs final integration of grid data
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CPU Grid Data Integration
• Effect of overflow 

atoms are added 
to the CPU master 
energygrid array

• Slice of grid point 
values calculated 
by GPU are added 
into the master 
energygrid array 
while removing the 
padded elements 
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GPU Thread Coarsening

• Each thread computes 
potentials at four potential 
map points
– Reuse x and z components 

of distance calculation
– Check x and z components 

against cutoff distance
(cylinder test)

• Exit inner loop early upon 
encountering the first 
empty slot in a bin
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GPU Thread Inner Loop
for (i = 0;  i < BIN_DEPTH;  i++) {
aq = AtomBinCache[i].w;
if (aq == 0) break;

dx = AtomBinCache[i].x - x;
dz = AtomBinCache[i].z - z;
dxdz2 = dx*dx + dz*dz;
if (dxdz2 < cutoff2) continue;

dy = AtomBinCache[i].y - y;
r2 = dy*dy + dxdz2;
if (r2 < cutoff2)
poten0 += aq * rsqrtf(r2);  // Simplified example

dy = dy - 2 * grid_spacing;
/* Repeat three more times */

}

Exit when an empty 
atom bin entry is 

encountered�

Cylinder test�

Cutoff test
and potential value 

calculation
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Cutoff Summation Runtime

50k–1M atom structure size

GPU cutoff with 
CPU overlap:
12x-21x faster 
than CPU core
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Summary
• Large bins allow re-use of all-input kernels 

with little code change
– But work efficiency can be very low

• Use of small-sized bins require more 
sophisticated kernel code to traverse list of 
small bins
– Much higher work efficiency
– Small bins also serve as tiles for locality

• CPU process overflow atoms from fixed 
capacity bins
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ANY MORE QUESTIONS?
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