Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 7: Input Compaction

Objective

- To learn the key techniques for compacting input data for reduced consumption of memory bandwidth
	- Via better utilization of on-chip memory
	- As well as fewer bytes transferred to on-chip memory
- To understand the tradeoffs between input compaction and input binning/regularization

Sparse Data Motivation for Compaction

- Many real-world inputs are sparse/non-uniform
- **Signal samples,** mesh models, transportation networks, communication networks, etc.

Sparse matrix-vector multiplication

- Compute $y \leftarrow Ax + y$
	- where A is sparse and x, y are dense

- Unlike dense methods, SpMV is generally
	- unstructured / irregular
	- entirely bound by memory bandwidth

Parallelizing CSR SpMV

Compressed Sparse Row

Straightforward approach

one thread per matrix row $\qquad \qquad \bullet$

CSR SpMV Kernel (CUDA)


```
int row = block(x * block x + thread Idx.x)if (row \langle num rows ) {
float dot = 0;
int row start = ptr[row];
int row end = ptr[row + 1];
for (int jj = row start; jj < row end; jj++)
    dot += data[jj] * x[indices[jj]]y[row] += dot;
```


ł

Problems with simple CSR kernel

Execution divergence

varying row lengths

Memory divergence

minimal coalescing $\qquad \qquad \bullet$

Memory divergence

minimal coalescing $\color{red} \bullet$

Regularizing SpMV with ELL format

Storage for K nonzeros per row

- pad rows with fewer than K nonzeros
- inefficient when row length varies

Quantize each row to a fix length K

Layout in column-major order

yields full coalescing

Memory Coalescing with ELL

©Wen-mei W. Hwu and David Kirk/NVIDIA

Exposing maximal parallelism

Use COO (Coordinate) format

list row, column, and value for every non-zero entry

Assign one thread to each non-zero entry

- each thread computes an $A[i,j]*x[j]$ product
- sum products with segmented reduction algorithm
- largely insensitive to row length distribution

Hybrid Format

- **ELL handles typical entries** $\qquad \qquad \bullet$
- **COO handles exceptional entries** $\qquad \qquad \bullet$
	- Implemented with segmented reduction $\qquad \qquad \bullet$

Any More Ideas?

- JDS format
	- Sort rows according to their number of non-zero elements
- Can use Hybrid with JDS and and launch multiple kernels

Sparse formats for different matrices

C 2010 NVIDIA Corporation

-mei W. Hwu and David Kirk/NVIDIA

©Wen

15

Structured Matrices

Unstructured Matrices

C 2010 NVIDIA Corporation

Performance Comparison

C 2010 NVIDIA Corporation

Binning of Sample Points

- For simplicity, we will use 1D gridding examples
- Each sample point has
	- S.x (will be represented with Bin#)
	- S.value (will be omitted unless necessary)

A Binned Gather Parallelization

A Tiled Gather Implementation

More on Tiled Gather

- Threads cooperate to load all the relevant bins from Global Memory to Shared Memory
- Each thread accesses relevant bins from Shared **Memory**
- Uniform binning for Non-uniform distribution
	- Large memory overhead for dummy cells
	- Reduced benefit of tiling
	- Many threads spend much time on dummy sample points

Compact Binning for Gather Parallelization

- Avoid pre-allocated fixed capacity bins (multidimensional array)
- Sort samples into bins of varying sizes in input array instead
	- Bins 5, 6, 8 are implicit, zero-sample

GPU Binning - Use Scatter to Generate Bin Capacities

Need to use atomic operations for counting the capacity

Determine Start and End of Bins

• Use parallel scan operations on the bin capacity array to generate an array of starting points of all bins (CUDPP)

Actual Binning

• All inputs can now be placed into their bins in parallel, using atomic operations

Controlling Load Balance (done during capacity generation)

- Limit the size of each bin
	- When counter exceeds limit for a bin, the input samples are placed into a "CPU" overflow bin
	- CPU places excess sample points into a CPU list
	- CPU does gridding on the excess sample points in parallel with GPU
	- Eventually merge

When a bin capacity reaches a preset limit, do not further increment the capacity counter But place the excess input into an overflow bin

Determine Start and End of Bins

• Use parallel scan operations on the bin capacity array to generate an array of starting points of all bins (CUDPP)

Actual Binning

• All inputs can now be placed into their bins in parallel

Note the similarity

- Compact bins CSR
- Overflow bins COO

• One could use ELL or JDS type of optimization on bins if desired

Hybrid Format

- **ELL handles typical entries** $\qquad \qquad \bullet$
- **COO handles exceptional entries** $\qquad \qquad \bullet$
	- Implemented with segmented reduction $\qquad \qquad \bullet$

ANY FURTHER QUESTION?