
©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 8: Privatization and
Further Studies

Objective

• To understand the nature of privatization of
highly contended output data structures
– When the output cannot be statically determined
– Queues, histograms, etc.

• To learn efficient queue structures that support
massively parallel extraction of input data from
bulk data structures

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Dynamic Data Extraction

• The data to be processed in each phase of
computation need to be dynamically determined
and extracted from a bulk data structure
– Harder when the bulk data structure is not organized

for massively parallel access, such as graphs.
• Graph algorithms are popular examples that deal

with dynamic data
– Widely used in EDA and large scale optimization

applications
– We will use Breadth-First Search (BFS) as an

example
©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Main Challenges of Dynamic Data

• Input data need to be organized for locality,
coalescing, and contention avoidance as they
are extracted during execution

• The amount of work and level of parallelism often
grow and shrink during execution
– As more or less data is extracted during each phase
– Hard to efficiently fit into one CUDA/OPenCL kernel

configuration, which cannot be changed once
launched

– Different kernel strategies fit different data sizes
©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Breadth-First Search (BFS)

sr t u
v w x y

sr t u
v w x y

sr t u
v w x y

sr t u
v w x y

s

r w

v t x

u y
Frontier vertex

Level 1

Level 2

Level 3

Level 4Visited vertex

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Sequential BFS

• Store the frontier in a queue
• Complexity (O(V+E))

s

r w

v t x

u y

Level 1

Level 2

Level 3

Level 4

sr tv xywu
Dequeue Enqueue

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Parallelism in BFS
• Parallel Propagation in each level
• One GPU kernel per level

s

r w

v t x

u y

Parallel

Parallel

v t x

u y

Level 1

Level 2

Level 3

Level 4

Kernel 3

Example kernel

Kernel 4

Parallel

global barrier

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

BFS in VLSI CAD

• Maze Routing

blockage
net terminal

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Potential Pitfall of Parallel
Algorithms

• Greatly accelerated n2 algorithm is still slower
than an nlogn algorithm.

• Always need to keep an eye on fast sequential
algorithm as the baseline.

R
unning Tim

e

Problem Size
©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Node Oriented Parallelization

• IIIT-BFS
– P. Harish et. al. “Accelerating large graph algorithms on the GPU

using CUDA”
– Each thread is dedicated to one node
– Every thread examines neighbor nodes to determine if its node

will be a frontier node in the next phase
– Complexity O(VL+E) (Compared with O(V+E))
– Slower than the sequential version for large graphs

• Especially for sparsely connect graphs

r s t u v w x y

r s t u v w x y

v t x

u y©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Matrix-based Parallelization
• Yangdong Deng et. al. “Taming Irregular EDA

applications on GPUs”
• Propagation is done through matrix-vector

multiplication
– For sparsely connected graphs, the connectivity matrix

will be a sparse matrix
• Complexity O(V+EL) (compared with O(V+E))

– Slower than sequential for large graphs

=

×

0
1
0

0
0
1

010
101
010s

u

v

s
u

v

s

u

v

s

u

v
s u v

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Need a More General Technique

• To efficiently handle most graph types
• Use more specialized formulation when

appropriate as an optimization

• Efficient queue-based parallel algorithms
– Hierarchical scalable queue implementation
– Hierarchical kernel arrangements

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

An Initial Attempt

• Manage the queue structure
– Complexity: O(V+E)
– Dequeue in parallel
– Each frontier node is a thread
– Enqueue in sequence.

• Poor coalescing
• Poor scalability

– No speedup v t x

uy

u y

v t x

u y

Parallel

Sequential

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Parallel Insert-Compact Queues

• C.Lauterbach et.al.“Fast BVH Construction on
GPUs”

• Parallel enqueue with compaction cost
• Not suitable for light-node problems

v t

y

x

uΦ Φ Φ Φ

u y
Compact

Propagate

v t x

u y

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Basic ideas
• Each thread processes one or more frontier

nodes
• Find the index of each new frontier node
• Build queue of next frontier hierarchically

hLocal queues

Global queue

q1 q2 q3

Index = offset of q2 (#node in q1) + index in q2

a b c g i jLocal

Global h

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Two-level Hierarchy

• Block queue (b-queue)
– Inserted by all threads in a

block
– Reside in Shared Memory

• Global queue (g-queue)
– Inserted only when a block

completes
• Problem:

– Collision on b-queues
– Threads in the same block

can cause heavy contention

g-queue

b-queue

Global Mem

Shared Mem

©Wen-mei W. Hwu and David
Kirk/NVIDIA Berkeley, January 24-
25, 2011

Warp-level Queue

Time

WiT7

WiT6

WiT0

WiT15

WiT14

WiT8

WiT23

WiT22

WiT16

WiT30

WiT29

WiT24

WjT7

WjT6

WjT0

WjT15

WjT14

WjT8

WjT23

WjT22

WjT16

WjT30

WjT29

WjT24

Warp i Warp j

• Thread Scheduling

• Divide threads into 8 groups (for GTX280)
– Number of SP’s in each SM in general
– One queue to be written by each SP in the SM

• Each group writes to one warp-level queue
• Still should use atomic operation

– But much lower level of contention©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Three-level hierarchy

w-queue

b-queue

g-queue

b-queue

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

• Shared Memory:
– Interleaved queue layout, no bank conflict

• Global Memory:
– Coalescing when releasing a b-queue to g-queue
– Moderate contention across blocks

• Texture memory :
– Store graph structure (random access, no coalescing)
– Fermi cache may help.

W-queues[][8]

Hierarchical Queue Management

W
-queue0

W
-queue1

W
-queue7

Hierarchical Queue Management

• Advantage and limitation
– The technique can be applied to any inherently

sequential data structure
– The w-queues and b-queues are limited by the

capacity of shared memory. If we know the upper limit
of the degree, we can adjust the number of threads
per block accordingly.

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Eight Optimization Patterns for
Algorithms (so far)

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

http://courses.engr.illinois.edu/ece598/hk/
GPU Computing Gems, Vol. 1 and 2

21

http://courses.engr.illinois.edu/ece598/hk/�

Impact of Techniques on Apps

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

22

Challenges of Parallel Programming
• Computations with no known scalable parallel

algorithms
– Shortest path, Delaunay triangulation, …

• Data distributions that cause catastrophical load
imbalance in parallel algorithms
– Free-form graphs, MRI spiral scan

• Computations that do not have data reuse
– Matrix vector multiplication, …

• Algorithm optimizations that are require expertise
– Locality and regularization transformations

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

23

Benefit from other people’s
experience

• GPU Computing Gems Vol 1
– Coming January 2011
– 50 gems in 10 applications areas
– Scientific simulation, life sciences, statistical modeling,

emerging data-intensive applications, electronic design
automation, computer vision, ray tracing and rendering,
video and imaging processing, signal and audio
processing, medical imaging

• GPU Computing Gems Vol 2
– Coming in May 2011
– 50+ gems in more application areas, tools, environments

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

24

THANK YOU!

©Wen-mei W. Hwu and David Kirk/NVIDIA
Chile, January 5-7, 2011

25

	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 8: Privatization and Further Studies
	Objective
	Dynamic Data Extraction
	Main Challenges of Dynamic Data
	Breadth-First Search (BFS)
	Sequential BFS
	Parallelism in BFS
	BFS in VLSI CAD
	Potential Pitfall of Parallel Algorithms
	Node Oriented Parallelization
	Matrix-based Parallelization
	Need a More General Technique
	An Initial Attempt
	Parallel Insert-Compact Queues
	Basic ideas
	Two-level Hierarchy
	Warp-level Queue
	Three-level hierarchy
	Hierarchical Queue Management
	Hierarchical Queue Management
	Eight Optimization Patterns for Algorithms (so far)
	Impact of Techniques on Apps
	Challenges of Parallel Programming
	Benefit from other people’s experience
	Thank you!

