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Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 8: Privatization and 
Further Studies



Objective

• To understand the nature of privatization of 
highly contended output data structures
– When the output cannot be statically determined
– Queues, histograms, etc.

• To learn efficient queue structures that support 
massively parallel extraction of input data from 
bulk data structures
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Dynamic Data Extraction

• The data to be processed in each phase of 
computation need to be dynamically determined 
and extracted from a bulk data structure
– Harder when the bulk data structure is not organized 

for massively parallel access, such as graphs.
• Graph algorithms are popular examples that deal 

with dynamic data
– Widely used in EDA and large scale optimization 

applications
– We will use Breadth-First Search (BFS) as an 

example
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Main Challenges of Dynamic Data

• Input data need to be organized for locality, 
coalescing, and contention avoidance as they 
are extracted during execution

• The amount of work and level of parallelism often 
grow and shrink during execution
– As more or less data is extracted during each phase
– Hard to efficiently fit into one CUDA/OPenCL kernel 

configuration, which  cannot be changed once 
launched

– Different kernel strategies fit different data sizes
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Breadth-First Search (BFS)
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Sequential BFS

• Store the frontier in a queue
• Complexity (O(V+E))
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Parallelism in BFS
• Parallel Propagation in each level
• One GPU kernel per level
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BFS in VLSI CAD

• Maze Routing

blockage
net terminal
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Potential Pitfall of Parallel 
Algorithms 

• Greatly accelerated n2 algorithm is still slower 
than an nlogn algorithm. 

• Always need to keep an eye on fast sequential 
algorithm as the baseline.
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Node Oriented Parallelization

• IIIT-BFS 
– P. Harish et. al. “Accelerating large graph algorithms on the GPU 

using CUDA”
– Each thread is dedicated to one node
– Every thread examines neighbor nodes to determine if its node 

will be a frontier node in the next phase
– Complexity O(VL+E) (Compared with O(V+E)) 
– Slower than the sequential version for large graphs

• Especially for sparsely connect graphs
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Matrix-based Parallelization
• Yangdong Deng et. al. “Taming Irregular EDA 

applications on GPUs”
• Propagation is done through matrix-vector 

multiplication
– For sparsely connected graphs, the connectivity matrix 

will be a sparse matrix
• Complexity O(V+EL)  (compared with O(V+E))

– Slower than sequential for large graphs
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Need a More General Technique

• To efficiently handle most graph types
• Use more specialized formulation when 

appropriate as an optimization

• Efficient queue-based parallel algorithms
– Hierarchical scalable queue implementation
– Hierarchical kernel arrangements
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An Initial Attempt

• Manage the queue structure
– Complexity: O(V+E)
– Dequeue in parallel
– Each frontier node is a thread
– Enqueue in sequence. 

• Poor coalescing
• Poor scalability

– No speedup v t x
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Parallel Insert-Compact Queues

• C.Lauterbach et.al.“Fast BVH Construction on 
GPUs”

• Parallel enqueue with compaction cost
• Not suitable for light-node problems
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Basic ideas
• Each thread processes one or more frontier 

nodes
• Find the index of each new frontier node
• Build queue of next frontier hierarchically

hLocal queues

Global queue

q1 q2 q3

Index = offset of q2 (#node in q1) + index in q2

a b c g i jLocal

Global h

©Wen-mei W. Hwu and David Kirk/NVIDIA 
Berkeley, January 24-25, 2011



Two-level Hierarchy

• Block queue (b-queue)
– Inserted by all threads in a 

block
– Reside in Shared Memory

• Global queue (g-queue)
– Inserted only when a block 

completes 
• Problem:

– Collision on b-queues
– Threads in the same block 

can cause heavy contention
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Warp-level Queue
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• Thread Scheduling

• Divide threads into 8 groups (for GTX280)
– Number of SP’s in each SM in general
– One queue to be written by each SP in the SM

• Each group writes to one warp-level queue
• Still should use atomic operation
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Three-level hierarchy
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• Shared Memory: 
– Interleaved queue layout, no bank conflict

• Global Memory: 
– Coalescing when releasing a b-queue to g-queue
– Moderate contention across blocks

• Texture memory :
– Store graph structure (random access, no coalescing)
– Fermi cache may help.

W-queues[][8]

Hierarchical Queue Management
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Hierarchical Queue Management

• Advantage and limitation
– The technique can be applied to any inherently 

sequential data structure
– The w-queues and b-queues are limited by the 

capacity of shared memory. If we know the upper limit 
of the degree, we can adjust the number of threads 
per block accordingly.
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Eight Optimization Patterns for 
Algorithms (so far)
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http://courses.engr.illinois.edu/ece598/hk/
GPU Computing Gems, Vol. 1 and 2
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Impact of Techniques on Apps
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Challenges of Parallel Programming
• Computations with no known scalable parallel 

algorithms
– Shortest path, Delaunay triangulation, …

• Data distributions that cause catastrophical load 
imbalance in parallel algorithms
– Free-form graphs, MRI spiral scan

• Computations that do not have data reuse
– Matrix vector multiplication, …

• Algorithm optimizations that are require expertise
– Locality and regularization transformations

©Wen-mei W. Hwu and David Kirk/NVIDIA                       
Chile, January 5-7, 2011

23



Benefit from other people’s 
experience

• GPU Computing Gems Vol 1
– Coming January 2011
– 50 gems in 10 applications areas
– Scientific simulation, life sciences, statistical modeling, 

emerging data-intensive applications, electronic design 
automation, computer vision, ray tracing and rendering, 
video and imaging processing, signal and audio 
processing, medical imaging

• GPU Computing Gems Vol 2
– Coming in May 2011
– 50+ gems in more application areas, tools, environments
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THANK YOU!
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