Towards Automation of GPU
Program Optimization

I-Jui (Ray) Sung,

John Stratton, Sara S. Baghsorkhi, Christopher I. Rodrigues
Wen-Mei Hwu
The IMPACT Research Group,

University of lllinois at Urbana-Champaign

I

1/28/11

Performance Optimization for GPU
Programs

* The process of manually optimizing GPU
computing kernels is usually incremental

— Some transformations enable more
transformations; e.g. coarsening enable register
tiling

— Takes hours or days between steps

Performance Optimization for GPU
Programs

* How can tools help?

Performance Optimization for GPU
Programs

* How can tools help?

— Automagically convert naive GPU kernels to the
optimized kernel?

* In this case, ideally the tool’s output does not have to
be human-readable

Performance Optimization for GPU
Programs

* How can tools help?

— Automagically convert naive GPU kernels to the
optimized kernel?

* In this case, ideally the tool’s output doesn’t have to be
human-readable

* Less likely to happen except domain-specific cases

Performance Optimization for GPU
Programs

* How can tools help?

— Automagically convert naive GPU kernels to the
optimized kernel?

* In this case, ideally the tool’s output doesn’t have to be
human-readable

* Less likely to happen except domain-specific cases

— Or, a toolbox of source code refactoring tools?

Performance Optimization for GPU
Programs

* How can tools help?

— Automagically convert naive GPU kernels to the
optimized kernel?

* In this case, ideally the tool’s output doesn’t have to be
human-readable

* Less likely to happen except domain-specific cases

— Or, a toolbox of source code refactoring tools?

* The tool’s output has to be close enough to the input,
allowing the programmer to continue working on it.

— E.g. applying domain-specific optimizations

Performance Optimization for GPU
Programs

* Atool should produce minimally changed
code with highlighted changes, allowing users
continue working on it

— Each change can be one or a small set of
optimizations

Orion: Reducing Performance Cost of

Heterogeneous Parallelism

CUDA Code

OpenCL Code

Pyon Code

DSL Code

) 4

) 4

) 4

Orion Performance Portability Framework

ULCEL: Gran.ularlty Tiling and Blocking Scatter to Gather
Coarsening
Compute and Data Performance
Vectorization Transformation Estimation
MuticoreCUDA C CUDA
OpenCL Backend

Data Layout

Stack
NVIDIA GPUs

AMD/ATI
GPUs

Intel CPUs

1/28/11 AMD CPUs

1/28/11

An Example: 2D naive Jacobi

#define Index2D(_nx,_1i,_j) ((_i)+_nxx(_j))

__global__ void block2D_naive(float fac,
float xA,float xAnext, int nx, int ny)
int i
int j

blockIdx.x*blockDim.x+threadIdx.Xx;
blockIdx.yxblockDim.y+threadIdx.y;

if(i>0 && j>0 &&(i<nx-1) &&(j<ny-1))

{

Anext[Index2D (nx, i, j)]
A[Index2D (nx, i, j +
A[Index2D (nx, i, j -
A[Index2D (nx, i + 1
A[Index2D (nx, i - 1

+
+
. +
— 4.0f x A[Index2D (nx,

N S N
[O ”

1
J
]

, j)1 / (facxfac);

10

1/28/11

After Coarsening Along Y

__global__ void block2D_naive(float fac,
float xA,float xAnext, int nx, int ny)
{

int i = blockIdx.xxblockDim.x+threadIdx.Xx;
int j; //= blockIdx.yxblockDim.y+threadIdx.y;

if(i>0 && (i<nx-1))
{

for(j=1;j<ny-1;j++)
{

S

T S o R I e

Anext [Index2D (nx, 1i,
A[Index2D (nx, i, j
A[Index2D (nx, i, j
A[Index2D (nx, 1 + 1,
A[Index2D (nx, 1 - 1,
— 4.0f % A[Index2D (nx

|+ -
[e ”
+ + +

, 1)1 / (facxfac);

11

Register Tiling Exploiting Data Reuse

__global__ void block2D_naive(float fac,
float %A, float *xAnext, int nx, int ny)
{

int i = blockIdx.xxblockDim.x+threadIdx.x;

int j; // = blockIdx.yxblockDim.y+threadIdx.y;
float top, bottom, current;

if(i>0 &&(i<nx-1))

{

bottom = AlIndex3D (nx, 1, 9)];
current = A[Index3D (nx, i, 1)];
top = A[Index3D (nx, i, 2)];
Ior(j:l;j<ny—1;j++)

Anext [Index2D (nx, ny, i, j)] =
top +
bottom +
A@[Index2D (nx, i + 1, j)] +
A@[Index2D (nx, i - 1, j)I
- 4.0f % current / (facxfac);
bottom = current;
current = top;
top = A[Index2D (nx, ny, i, j+2)1];
s
1/28/11 } .

}

Memory Layout Transformation Tool

* Memory layout transformation is a useful
transformation for GPU code
— Array-to-Structure to Structure-of-Array

transformation helps vectorization on CPU, and
GPU memory coalescing on GPU

Data Layout Transformation

y=0 y=1

<

> < >

Array of Structure: [z][y][x][e]

PR = U = S = O = SR = O = S

Structure of Array: [e][z][y][x]

4X faster than AoS on GTX280
e Gl Gl —

1/28/11 [2][Y31.4][X31.4][€][Y3.0l[X3.0], 6.6 X faster than AoS

Performance of LBM in Different
Memory Layouts and Array Sizes

2.6
2.4
2.2

2
1.8
1.6 “=zyxe —
1.4 “Weezyx

1.2 o

1 “>e=zyex B
0.8

0.6
0.4

0 | MR ey
(R —

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480
X

1/28/11 15

Normalized Execution Time (usec)

Automating Memory Layout
Transformation

* Applying layout transformation manually?

— Unlike coarsening and register tiling, data transformation,
layout transformation is a global transformation

— Marshalling code has to be introduced to guarantee
correctness

* Objective: turn layout transformation into a series of
incremental, local, automated changes of the
application

— Consists of a static GPU kernel refactoring tool and a run-
time marshalling library

— Run-time library helps handling data marshalling
dynamically data layout transformation

ADAPT: Performance Analysis Tool for
GPU Programs

 Point out the estimated cost of each
statement in the CUDA kernel

— Through static analysis and instrumentation

— Provide concrete information like:
* The degree of branch divergence of a given if statement

e Extra execution cycles due to memory accesses by a
statement

Orion: Reducing Performance Cost of

Heterogeneous Parallelism

CUDA Code

OpenCL Code

Pyon Code

DSL Code

) 4

) 4

) 4

Orion Performance Portability Framework

Compute and Data
Vectorization

MuticoreCUDA C CUDA

3 I —

Host C Compiler OpenCL Software
Stack

AMD CPUs AMD/ATI NVIDIA GPUs
GPUs

1/28/11 Intel CPUs

Conclusion

» Refactoring compiler/tools can help heavy-
lifting in the process of incremental GPU

program optimization
* However, compilers/tools are fragile

— Compilers transformations need to be part of the
development, rather than afterthought

