Donald Gavel and Marc Reinig
Laboratory for Adaptive Optics

University of California Observatories N\
UC Santa Cruz N

Accelerator-based Computing and Manycore Meeting N i
SLAC, Stanford, CA
November 30, 2009

Lick Observatory, Mt Hamilton, CA



Laboratory for Adaptive Optics
UCO/Lick Observatory
University of California, Santa Cruz

The Atmosphere Blurs Astronomical Images

Temperature fluctuations in small patches of air cause
changes in index of refraction (like many little lenses)

Light rays are refracted many times (by small amounts)

When they reach telescope they are no longer parallel

Hence rays can'’t be focused to a point:
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Astronomy with Adaptive Optics: AO on the Keck

Telescope brings the Galactic Center into focus

Prof. Andrea Ghez,
UCLA Galactic Center Group

Year: 1995.9

The Galactic Center at 2.2 microns
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AO correctlon needs to keep up with atmospherlc
turbulence: ~ 1000 updates / second
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If there is no nearby star, make your own “star”
using a laser

Concept Implementation

Laser Distant
Guide ® Galaxy
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Anatomy of a Laser Guide Star

The Guide Star:
Fluorescent scattering
by the mesospheric
Sodium layer at ~ 95 km

Maximum altitude of
(unwanted) backscatter
from the air ~ 35 km

Back scatter from air
molecules
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Wavefront phase is corrected with a deformable mirror

MEMS deformable

mirror with electrostatic rjj

actuators — —
— —

Simplified actuator model:
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Adaptive Optics control needs are expanding

« Larger telescopes R
— Spatial sampling set by the atmosphere ->
number of samples grows with D2

— D=10 meter today, D=30-40 meter within
the next decade LGS 2

LGS 1

« Shorter wavelength science bands
(moving from IR to Visible 1)

— More precise correction needed (fraction
of A)
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Tomographic Wavefront Reconstruction:
a quick summary

Combine onto DMs Propagate light from
Science target (wide field)

MCAO |
Measure light from . Back- ’:-\ﬁc-?l%
Project® to guide stars '

guide stars

Project along science Propagate light from
q direction onto one DM  Science target (narrow field)
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Tomography AO control architecture is a mixture of
pipelined and massively-parallel elements

These sharpen
their individual

corresponding
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The tomography engine processor array maps to th
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Details of processi
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Lots of speedup from parallelization, but serlal steps
demand low communication latency

Frame 1 | Frame 2 Frame 3 | Frame 4 Frame 5 Frame 6

camers K X X

CCD Read

WFS

Tomography

DM Cmd
San

DM Hold Computational Eﬁ
Latency

«—-2 Frames (-1 rnsar.}—>| |

Total Latency

=4 Frames (-2 msec)
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At various stages in the algorithm, The 3-D systolic array performs
compute elements represent: elemental operations:
*  3-D spatial sample points in the  Lateral distortion-correct (“stencil”)

atmospheric volume

» 2-D spatial sample points on the
aperture associated with each

» Lateral shift and scale
« Z sum (forward propagation)

wavefront sensor « Zdistribute (back propagation)
* 2-D spatial sample points on the * Filtering (massively parallel in
aperture associated with each Fourier domain)

deformable mirror

Masking (massively parallel in
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A single processing element (FPGA architecture)
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Key issues limit scalabillity

* Low latency: data in to data out time has direct impact on
AO performance
— Processors are |/O bound (both FPGA and GPU) — data
transmission is as expensive as data computation
* Fourier transforms:
— Essential to the AO tomography algorithm
— Dominant source of computational delay
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Calculatlng the DFT with an array of
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Conclusions

* AO real-time processors are transitioning from fast single
CPU solutions to the massively-parallel domain

« Key AO multi-processor architecture needs are not a
clean match to the market driven needs

« Even with massive parallelization, the AO algorithm (as
we now understand it) is not O(N) speed-up — and so is
: oy \a D/




