
1

A. Bonissent, Manycore, Stanford december 09

Accelerated image
reconstruction on a cluster of

two AMD GPUs in CBCT with
non-uniform detector geometry

Alain Bonissent
Centre de Physique des Particules de Marseille

2

A. Bonissent, Manycore, Stanford december 09

X-ray computed tomography

From Kak-Slaney :
Principles of Computerized Tomographic Imaging

Same object seen under many different angles
provides different projections.

Combining all the projections => 3D object

3

A. Bonissent, Manycore, Stanford december 09

The small animal CT scanner

4

A. Bonissent, Manycore, Stanford december 09

Xpad3

Xpad3 is the latest X ray detector developed at CPPM.

Hybrid : each pixel has its own analog and digital electronics

Pixel size : 130 x 130 μm
Total : 560x960 pixels

Fast readout and data transfer up to 1000 frames/s
(optical link and PciExpress)

sensor – Si or CdTe

electronic chip
(pixel readout)

5

A. Bonissent, Manycore, Stanford december 09

Made of chips 1x1cm
assembled in barettes,
barettes assembled in tiles

Problems :

effective pixels are not square;
shape and size vary with position;
dead regions between barettes;

XPAD specific complications

Xpad2

6

A. Bonissent, Manycore, Stanford december 09

XPAD tiles

Xpad2

Upper left corner Xpad 2
Ideal grid

Effective grid :

pixels are projected on mean plane

7

A. Bonissent, Manycore, Stanford december 09

Feldkamp, Davis, Kress :
analytic tomographic reconstruction for cone-beam geometry

For each image :

• Cone beam correction, solid angle seen by pixels depends on their
 position, count => Log(count)
• Filtering : enhance high frequency components. Convolve with
 Fourier transform of ramp filter.

• Backproject :
 Fdivide the volume into small cubes (voxels);
 For each voxel, project to the detector plane, find the attenuation at
 this point, accumulate in the voxel
 This is the cpu intensive part : bilinear interpolation

FDK

8

A. Bonissent, Manycore, Stanford december 09

XPAD FDK

Possible solutions to non-uniform geometry

•The easy and obvious :
 Rebin the images to a regular grid
 Easy to implement : bilinear interpolation once the location of each pixel is known;
 Standard FDK software can then be used.
 Fast if rebinning inside FDK loop, otherwise disk I/O
 Can affect the resolution because signal is not liear.

Alternate and better :
 Distort the detector plane so that pixels positions are uniformly distributed.
 The (small) distortion field is stored in a grid with 2x the resolution. Positions are
 linearly interpolated into pixel coordinates. Then pixel count is interpolated only once.

600x900 pixels and 360 projections, 600x600x900 voxels
reconstruction would need several hours on conventional CPU

9

A. Bonissent, Manycore, Stanford december 09

The AMD 9270 GPU

2GB on board memory DDR5
1.2 Tflops single precision
240 Gflops double precision

800 stream cores
PCIExpress x16

10

A. Bonissent, Manycore, Stanford december 09

Programming the GPU

Coding for the AMD GPU : Brook+

•Kernels execute on the GPU.
•Brook+ is the programming language for kernels
 Evolution of Brook (Stanford University)
 C with a few extensions :
 transfer data between CPU and GPU
 access stream indices, (can be multidimensional)
•Stream : a set of data elements on which the kernel is
 applied independently : can run in parallel
 Pixels in an image
 Voxels
 Image calibration constants

brook+ is processed by pre-compiler -> C++

11

A. Bonissent, Manycore, Stanford december 09

FDK in Brook

Most operations can run in parallel

•Image preprocessing : pixel level
•Convolution : Use a trivial algorithm with nested loops
 not fully efficient but fast anyway

•Backpropagation : voxel driven ; reconstructed volume
 is 1 stream. Random access to image pixels (DDR5)

•Load images : disk->cpu->gpu

•volume in GPU during all processing, to disk at the end

•Problems : volume in double precision is more than GPU
 memory (2 GB) : Process in 2 halves; streams limited in size,
need to divide volume in slices

12

A. Bonissent, Manycore, Stanford december 09

Program architecture

Java
steering

C++
interface

GPU
Brook+

Prepare lookup tables
for geometry corrections
and interpolation

neighbours and weights

Find dead pixels
(flatfield and dark)

control execution

Initialize GPU device;
Load tables

Disk IO :
load images
write reconstructed volume

Control execution of
kernels in GPU

Intensive operations

Image calibration;
interpolation of bad pixels;

FDK backpropagation
with double interpolation

13

A. Bonissent, Manycore, Stanford december 09

Performances Fdk on Xpad3 data

Total for a volume 560 x 560 x 960, 360 projections

200 s end to end, wall clock time

Includes processing and disk I/O both ways

Expected for CPU version : several hours.

Can do better :

run GPU processing and I/O in parallel;
use 2 GPUs : no need to read images twice

14

A. Bonissent, Manycore, Stanford december 09

MultiGPU

Two PCI Express ports on motherboard
Can accommodate a second 9270

Client-server architecture
One server per GPU

Communication :

sockets for synchronization
shared memory for images
and volume slices

Brook+ has multiGpu capabilities,
but I was unable to make it work

multiprocess and sockets
not so elegant but robust

15

A. Bonissent, Manycore, Stanford december 09

Performance 2 GPU

Total end to end 133 s, improved by x110 w.r. to full cpu

But Initialization 15s, transfer cpu->gpu 35s, writing volume on disk : 30s
total 80s CPU+I/O irreducible

Effective processing 50s.

Speedup 200 - 300 with 2 GPUs, 100 - 150 with a single GPU

16

A. Bonissent, Manycore, Stanford december 09

Conclusion

Huge gain in performance for limited effort
(parallel processing and fast random memory access)

FDK is simple, stream computing well suited
Coding is easy, debugging can be tricky

MultiGpu : added complexity, more problems

17

A. Bonissent, Manycore, Stanford december 09

It does work !

CT scan at CPPM
S. Nicol, S. Karkar, C. Hemmer, D. Benoit

