

VSCSE Summer School 2010 :
Proven Algorithmic Techniques for Many

Hands

VSCSE Summer School 2010 :
Proven Algorithmic Techniques for Many

Processors

Hands-on Labs

Nasser Anssari

Li-Wen Chang

Hee-Seok Kim

Deepthi Nandakumar

Nady Obeid

Christopher Rodriguez

John Stratton

I-Jui Sung

Xiao-Long Wu

The

Coordinated Science Laboratory

Department of Electrical and Computer Engineering

University of Illinois at Urbana

VSCSE Summer School 2010 :
Proven Algorithmic Techniques for Many-core

Research Group
Coordinated Science Laboratory

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

The purpose of the hands-on labs is to assist an online short course that teaches proven
algorithmic techniques for many-core processors. This manual includes an introductory lab, followed
by several well-known problems like 7-point stencil computation, Lattice-Boltzmann method,
Columbic potential calculation, and MRI reconstruction.

In order to cater to students with different levels of understanding of CUDA programming, we
provide 4 hands-on labs, each of which reinforces one or several algorithmic techniques and
performance optimizations. Most labs are designed with levels of different difficulties. Due to limited
time in a hands-on lab section, we suggest that you choose the difficulty level that best fits your
programming skills. If you have time, you can take on another level. Here is the table of contents of
this manual.

Lab 0: Package Download and Environment Setup ... 3

Lab 1: 2-D blocking and Register Tiling .. 7

Lab 2A: Data Layout Transformation .. 14

Lab 2B: Binning with Uniform Distributions ... 19

Lab 3: Binning with Non-Uniform Distributions ... 2

8

If you have questions during the lab sections, please raise your hand or post your questions on the
discussion boards. The TA’s will assist you as soon as they can.

Please do not distribute this manual without consent. For questions about this manual or its content
please contact the Impact research group at the University of Illinois at Urbana-Champaign.

Lab 0: Package Download and Environment Setup

Lab 0: Package Download and Environment Setup

1. Objective

The purpose of this lab is to check your environment settings and to make sure you can compile
and run CUDA programs on the NCSA AC cluster. The objectives of this lab are summarized below:

• To download the assignment package, unpack it and walk through the directory structure.

• Set up the environment for executing the assignments.

2. Preliminary work

Step 1: Use an SSH program
initial password given to you. Your home directory can be organized in any
the SDK framework including the code for all of the lab assignments, execute the unpack command in
the directory you would like the SDK to be deployed.

$> tar – zxf ~xiaolong/CUDA_WORKSHOP_UIUC1008.tgz

Step 2: Go to the lab0 directory and make

$> cd CUDA_WORKSHOP_UIUC1008/benchmarks/deviceQuer y/src/cuda

There should be at least two files:

� deviceQuery.cu

� Makefile

Note: If you are a remote user, we recommend you use an FTP program with the SFTP
protocol and your account/password to retrieve the source files on ac.ncsa.uiuc.edu for editing
because the network may be unstable and disconnected during lab sections.

Lab 0: Package Download and Environment Setup

3

Lab 0: Package Download and Environment Setup

Xiao-Long Wu (xiaolong@illinois.edu)

s to check your environment settings and to make sure you can compile
and run CUDA programs on the NCSA AC cluster. The objectives of this lab are summarized below:

download the assignment package, unpack it and walk through the directory structure.

et up the environment for executing the assignments.

SSH program to login to ac.ncsa.uiuc.edu, using the training account login and
. Your home directory can be organized in any

the SDK framework including the code for all of the lab assignments, execute the unpack command in
the directory you would like the SDK to be deployed.

zxf ~xiaolong/CUDA_WORKSHOP_UIUC1008.tgz

: Go to the lab0 directory and make sure it exists and is populated.

$> cd CUDA_WORKSHOP_UIUC1008/benchmarks/deviceQuer y/src/cuda

There should be at least two files:

If you are a remote user, we recommend you use an FTP program with the SFTP
our account/password to retrieve the source files on ac.ncsa.uiuc.edu for editing

because the network may be unstable and disconnected during lab sections.

Lab 0: Package Download and Environment Setup

s to check your environment settings and to make sure you can compile
and run CUDA programs on the NCSA AC cluster. The objectives of this lab are summarized below:

download the assignment package, unpack it and walk through the directory structure.

, using the training account login and
. Your home directory can be organized in any way you like. To unpack

the SDK framework including the code for all of the lab assignments, execute the unpack command in

sure it exists and is populated.

$> cd CUDA_WORKSHOP_UIUC1008/benchmarks/deviceQuer y/src/cuda

If you are a remote user, we recommend you use an FTP program with the SFTP
our account/password to retrieve the source files on ac.ncsa.uiuc.edu for editing

because the network may be unstable and disconnected during lab sections.

Lab 0: Package Download and Environment Setup

3. Make the first CUDA program and execute it on the AC cluster

The execution steps of this lab are
remaining labs in the manual.

Step 1: Set environment variables.
terminal window.

$> cd CUDA_WORKSHOP_UIUC1008/
$> source env.sh
Parboil librar y path is set: /home/ac/xiaolong/CUDA_WORKSHOP_UIUC 1008

Step 2: Compile the lab.

$> ./parboil compile deviceQuery cuda

Step 3: Execute the lab.

$> ./parboil run deviceQuery cuda default

You shall see the following message.

PARBOIL_ROOT=/home/ac/xiaolong/CUDA_WORKSHOP_UIUC10 08 make
/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/com
make[1]: Entering directory
`/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/common/sr c'
make[1]: Nothing to be done for `all'.
make[1]: Leaving directory
`/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/common/sr c'
nvcc - L/home/ac/xiaolong/CUDA_WORKSHOP_UIUC100
lcuda -L/lib - L/usr/local/cuda/lib
L/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/common/li b
build/cuda_default/deviceQuery.o
lparboil_cuda - lcuda
There is 1 device supporting CUDA

Device 0: "Tesla T10 Processor"
 Major revision number: 1
 Minor revision number: 3
 Total amount of global memory: 4294 770688 bytes
 Number of multiprocessors: 30
 Numbe r of cores: 240
 Total amount of constant memory: 6553 6 bytes
 Total amount of shared memory per block: 1638 4 bytes
 Total number of registers available per block: 1638 4
 Warp size:
 Maximum number of threads per block: 512
 Maximum sizes of each dimension of a block: 512 x 512 x 64
 Maximum sizes of each dimension of a grid: 6553 5 x 65535 x 1
 Maximum memory pitch:
 Texture alignment: 256 bytes

Lab 0: Package Download and Environment Setup

4

3. Make the first CUDA program and execute it on the AC cluster

The execution steps of this lab are listed below. You shall use the commands listed here in the

: Set environment variables. You have to do this step whenever you start a new

$> cd CUDA_WORKSHOP_UIUC1008/

y path is set: /home/ac/xiaolong/CUDA_WORKSHOP_UIUC 1008

./parboil compile deviceQuery cuda

$> ./parboil run deviceQuery cuda default

You shall see the following message.

PARBOIL_ROOT=/home/ac/xiaolong/CUDA_WORKSHOP_UIUC10 08 make
/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/com mon/src
make[1]: Entering directory
`/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/common/sr c'
make[1]: Nothing to be done for `all'.
make[1]: Leaving directory
`/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/common/sr c'

L/home/ac/xiaolong/CUDA_WORKSHOP_UIUC100 8/common/lib
L/usr/local/cuda/lib -

L/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/common/li b
build/cuda_default/deviceQuery.o - o build/cuda_default/deviceQuery

lcuda -lparboil
There is 1 device supporting CUDA

ice 0: "Tesla T10 Processor"
Major revision number: 1
Minor revision number: 3
Total amount of global memory: 4294 770688 bytes
Number of multiprocessors: 30

r of cores: 240
Total amount of constant memory: 6553 6 bytes
Total amount of shared memory per block: 1638 4 bytes
Total number of registers available per block: 1638 4
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 6553 5 x 65535 x 1
Maximum memory pitch: 2147483647 bytes
Texture alignment: 256 bytes

3. Make the first CUDA program and execute it on the AC cluster

listed below. You shall use the commands listed here in the

You have to do this step whenever you start a new

y path is set: /home/ac/xiaolong/CUDA_WORKSHOP_UIUC 1008

PARBOIL_ROOT=/home/ac/xiaolong/CUDA_WORKSHOP_UIUC10 08 make -C

8/common/lib -lm -lpthread -

o build/cuda_default/deviceQuery -

Total amount of global memory: 4294 770688 bytes

Total amount of constant memory: 6553 6 bytes
Total amount of shared memory per block: 1638 4 bytes

Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 6553 5 x 65535 x 1

2147483647 bytes
Texture alignment: 256 bytes

Lab 0: Package Download and Environment Setup

 Clock rate: 1.30 GHz
 Concurrent copy and execution: Yes

Test PASSED
Parboil parallel benchmark suite, version 0.1

4. Understanding the Parboil framework

In the hands-on labs for the ManyCore Processors course, we use a framework called Parboil to
organize the labs. This is different from the lab organization framework used in the Intro
hands-on labs. The Parboil framew
of Illinois, and is meant to provide an easier interface to manipulate benchmarks and measure
performance on a GPU platform.

All lab assignments shall be compiled and run by the parboil script
package directory, as listed in the previous sections. The parboil script is designed to submit jobs to the
AC cluster in a batch mode fashion.

The unzipped lab package is composed of the following directory structures. For simplici
only lists the information you may need to know.

File “env.sh”: This is the environment setting file.

File “parboil”: This is the main script to compile and run the labs.

Directory “benchmarks/”: This directory stores the labs.

Subdirectory list: cp/ deviceQuery/ lbm/ mri/ stencil/

Each lab is composed of the directories, “build”, “input”, “output”, “src”, and “tools”. Directory

“build” stores the executables of each lab. Directory “input” stores the problem parameters and input

data sets. Directory “output” stores the problem output data sets and golden results for comparison.

Directory “src” stores the source files of the problem of different versions or phases. Directory “tools”

stores the tools to assist the lab result comparison.

Directory “common/”: This directory contains libraries shared by all labs.

Subdirectory “src/”: This directory contains the main parboil library source file. If you plan to port the

lab package to another environment, you should rebuild the parboil library at this p

Directory “driver/”: Here lists the related tools to manipulate the compilation and execution of
the labs.

The output log of each lab execution shall list the execution time taken for each of the following
sections, IO, GPU, Copy, and Compute. Their

IO : Time spent in input/output.

GPU: Time spent computing on the GPU

Copy: Time spent synchronously

GPU.

Lab 0: Package Download and Environment Setup

5

Clock rate: 1.30 GHz
Concurrent copy and execution: Yes

Parboil parallel benchmark suite, version 0.1

tanding the Parboil framework

on labs for the ManyCore Processors course, we use a framework called Parboil to
organize the labs. This is different from the lab organization framework used in the Intro

on labs. The Parboil framework is developed by the IMPACT Research group at the University
of Illinois, and is meant to provide an easier interface to manipulate benchmarks and measure

All lab assignments shall be compiled and run by the parboil script
package directory, as listed in the previous sections. The parboil script is designed to submit jobs to the
AC cluster in a batch mode fashion.

The unzipped lab package is composed of the following directory structures. For simplici
only lists the information you may need to know.

File “env.sh”: This is the environment setting file.

File “parboil”: This is the main script to compile and run the labs.

Directory “benchmarks/”: This directory stores the labs.

cp/ deviceQuery/ lbm/ mri/ stencil/

Each lab is composed of the directories, “build”, “input”, “output”, “src”, and “tools”. Directory

“build” stores the executables of each lab. Directory “input” stores the problem parameters and input

ctory “output” stores the problem output data sets and golden results for comparison.

Directory “src” stores the source files of the problem of different versions or phases. Directory “tools”

stores the tools to assist the lab result comparison.

“common/”: This directory contains libraries shared by all labs.

Subdirectory “src/”: This directory contains the main parboil library source file. If you plan to port the

lab package to another environment, you should rebuild the parboil library at this p

Directory “driver/”: Here lists the related tools to manipulate the compilation and execution of

The output log of each lab execution shall list the execution time taken for each of the following
sections, IO, GPU, Copy, and Compute. Their meanings are listed below.

: Time spent in input/output.

: Time spent computing on the GPU, recorded asynchronously.

synchronously moving data to/from GPU and allocating/freeing memory on the

Clock rate: 1.30 GHz

on labs for the ManyCore Processors course, we use a framework called Parboil to
organize the labs. This is different from the lab organization framework used in the Intro-to-CUDA

ork is developed by the IMPACT Research group at the University
of Illinois, and is meant to provide an easier interface to manipulate benchmarks and measure

All lab assignments shall be compiled and run by the parboil script under the unzipped lab
package directory, as listed in the previous sections. The parboil script is designed to submit jobs to the

The unzipped lab package is composed of the following directory structures. For simplicity, here

Each lab is composed of the directories, “build”, “input”, “output”, “src”, and “tools”. Directory

“build” stores the executables of each lab. Directory “input” stores the problem parameters and input

ctory “output” stores the problem output data sets and golden results for comparison.

Directory “src” stores the source files of the problem of different versions or phases. Directory “tools”

“common/”: This directory contains libraries shared by all labs.

Subdirectory “src/”: This directory contains the main parboil library source file. If you plan to port the

lab package to another environment, you should rebuild the parboil library at this place.

Directory “driver/”: Here lists the related tools to manipulate the compilation and execution of

The output log of each lab execution shall list the execution time taken for each of the following

moving data to/from GPU and allocating/freeing memory on the

Lab 0: Package Download and Environment Setup

Driver : Time spent in the host interacting with the

queueing asynchronous operations

Copy_Async: Time spent in asynchronous transfers

Compute: Time for all program execution on the host CPU other than parsing

arguments, I/O, GPU, and copy.

CPU/GPU Overlap: Time double

not intended for direct usage

Lab 0: Package Download and Environment Setup

6

Time spent in the host interacting with the driver, primarily for recording the time

ueueing asynchronous operations

Time spent in asynchronous transfers

Time for all program execution on the host CPU other than parsing

arguments, I/O, GPU, and copy.

Time double-counted in asynchronous and host activity: automatically filled in,

ot intended for direct usage.

driver, primarily for recording the time spent

Time for all program execution on the host CPU other than parsing command line

ivity: automatically filled in,

Lab 1: 2-D blocking and Register Tiling

Lab 1: 2

Li-Wen Chang (lchang20@illinois.edu), Deepthi Nandakumar (nandaku2@illinois.edu)

1. Objective

The purpose of this lab is to provide a real application environment to
effects of 2-D blocking with data reuse and register tiling transformations. This lab introduces the 7
point stencil probe application, a micro

This lab will draw on the lecture material on

Increasing locality in dense arrays (with a focus on tiling).

Improving efficiency and vectorization in dense arrays.

The source file directory for lab 1.1 contains two options for students:

Difficulty Level 1: Students who are experie
good understanding of the lecture material should choose this section. Students choosing Lab 1.1
will need to implement Optimizations 1, 2 and 3 detailed in Section 3 below in the file
kernels1.1.cu.

Difficulty Level 2: Students who are not very experienced in parallel programming and/or are not
very familiar with the lecture material should choose this section. Students choosing Lab 1.2 will
need to implement only Optimizations 2 and 3 detailed in Section 3
kernels1.2.cu.

2. Examine and Understand the 7 pt. Stencil Kernel

The parboil benchmark 'stencil' contains the data and source code, which should compile and run
correctly with the parboil interface as it is. Note that the output compari
seconds.

$./parboil run stencil cuda default

All source code for the lab can be found in the benchmarks/stencil/src/cuda subdirectory of the
provided lab package. The 7-
computations on an input 3-D array. Every element of the output array is described as a weighted linear
combination of itself and 6 neighboring values as shown in Fig.1.

7

Lab 1: 2-D blocking and Register Tiling

Wen Chang (lchang20@illinois.edu), Deepthi Nandakumar (nandaku2@illinois.edu)

The purpose of this lab is to provide a real application environment to
D blocking with data reuse and register tiling transformations. This lab introduces the 7

point stencil probe application, a micro-benchmark and test-bed for large stencil grid applications.

ecture material on

Increasing locality in dense arrays (with a focus on tiling).

Improving efficiency and vectorization in dense arrays.

The source file directory for lab 1.1 contains two options for students:

: Students who are experienced in parallel program optimization and have a
good understanding of the lecture material should choose this section. Students choosing Lab 1.1
will need to implement Optimizations 1, 2 and 3 detailed in Section 3 below in the file

: Students who are not very experienced in parallel programming and/or are not
very familiar with the lecture material should choose this section. Students choosing Lab 1.2 will
need to implement only Optimizations 2 and 3 detailed in Section 3 below in the file

2. Examine and Understand the 7 pt. Stencil Kernel

The parboil benchmark 'stencil' contains the data and source code, which should compile and run
correctly with the parboil interface as it is. Note that the output comparison step will take several

$./parboil run stencil cuda default

All source code for the lab can be found in the benchmarks/stencil/src/cuda subdirectory of the
-pt stencil probe application is an example of nearest nei

D array. Every element of the output array is described as a weighted linear
combination of itself and 6 neighboring values as shown in Fig.1.

Fig 1: 7-point Stencil
 Illustration

D blocking and Register Tiling

Wen Chang (lchang20@illinois.edu), Deepthi Nandakumar (nandaku2@illinois.edu)

The purpose of this lab is to provide a real application environment to explore the performance
D blocking with data reuse and register tiling transformations. This lab introduces the 7-

bed for large stencil grid applications.

nced in parallel program optimization and have a
good understanding of the lecture material should choose this section. Students choosing Lab 1.1
will need to implement Optimizations 1, 2 and 3 detailed in Section 3 below in the file

: Students who are not very experienced in parallel programming and/or are not
very familiar with the lecture material should choose this section. Students choosing Lab 1.2 will

below in the file

The parboil benchmark 'stencil' contains the data and source code, which should compile and run
son step will take several

All source code for the lab can be found in the benchmarks/stencil/src/cuda subdirectory of the
pt stencil probe application is an example of nearest neighbor

D array. Every element of the output array is described as a weighted linear

Lab 1: 2-D blocking and Register Tiling

The main function in the file
execution including global memory allocation, input data copied to global memory, kernel launch and
output data copied back into host memory. The input data is generated in the generate_
file main.cu.

The naive kernel block2D_naive
compute the output grid as a weighted combination of elements of the input grid. The kernel
configuration parameters and launch are sh

dim3 block (tx, ty, 1);
dim3 grid ((nx+tx- 1)/tx, (ny+ty
block2D_naive<<<grid, block>>>(fac,d_A0,d_Anext,nx, ny,nz,tx,ty,1);

Note that each thread block processes a
for-loop that iterates in the z-direction. In the given kernel
single output point, by a weighted combination of 7 global memory elements that from the nearest
neighbors.

To simplify boundary conditions, the
rows, and leftmost and rightmost columns) is initialized to zeros, and the thread blocks process the
elements within this boundary. Thus, the thread blocks that form the outer boundary of the x
have a fraction of threads that are idle.

3. Modifying the Kernel

Difficulty Levels

This lab is organized into two difficulty levels, which students can choose from, depending on
their experience in parallel program optimization and/or their confidence
material. The students will be required to implement the required optimizations in a manner that best
exploits the performance potential of the application. The functions for Optimizations 1, 2, and 3
(detailed below) are declared as
kernels.cu.

Lab 1.1: Students choosing this lab will need to implement Optimizations 1, 2, and 3 in the file
kernels1.1.cu. The naive kernel
reference. Make sure that the file

8

in the file main.cu contains the major components of kernel setup and
execution including global memory allocation, input data copied to global memory, kernel launch and
output data copied back into host memory. The input data is generated in the generate_

block2D_naive is provided for reference in kernels.cu
compute the output grid as a weighted combination of elements of the input grid. The kernel
configuration parameters and launch are shown in the main.cu file in the main

dim3 block (tx, ty, 1);
1)/tx, (ny+ty -1)/ty,1);

block2D_naive<<<grid, block>>>(fac,d_A0,d_Anext,nx, ny,nz,tx,ty,1);

Note that each thread block processes a BLOCK_SIZE_X by BLOCK_SIZE_Y
direction. In the given kernel block2D_naive

single output point, by a weighted combination of 7 global memory elements that from the nearest

To simplify boundary conditions, the outer boundary of each x-y plane (topmost and bottommost
rows, and leftmost and rightmost columns) is initialized to zeros, and the thread blocks process the
elements within this boundary. Thus, the thread blocks that form the outer boundary of the x
have a fraction of threads that are idle.

This lab is organized into two difficulty levels, which students can choose from, depending on
their experience in parallel program optimization and/or their confidence and understanding of the lab
material. The students will be required to implement the required optimizations in a manner that best
exploits the performance potential of the application. The functions for Optimizations 1, 2, and 3

ared as block2D_opt_1, block2D_opt_2, and block2D_opt_3

Students choosing this lab will need to implement Optimizations 1, 2, and 3 in the file
. The naive kernel block2D_naive (explained in Section 2) is provi

reference. Make sure that the file kernels1.1.cu is included in the main.cu

contains the major components of kernel setup and
execution including global memory allocation, input data copied to global memory, kernel launch and
output data copied back into host memory. The input data is generated in the generate_data function in

kernels.cu, and is invoked to
compute the output grid as a weighted combination of elements of the input grid. The kernel

main function.

block2D_naive<<<grid, block>>>(fac,d_A0,d_Anext,nx, ny,nz,tx,ty,1);

BLOCK_SIZE_Y block, within a
block2D_naive, each thread computes a

single output point, by a weighted combination of 7 global memory elements that from the nearest

y plane (topmost and bottommost
rows, and leftmost and rightmost columns) is initialized to zeros, and the thread blocks process the
elements within this boundary. Thus, the thread blocks that form the outer boundary of the x-y plane

This lab is organized into two difficulty levels, which students can choose from, depending on
and understanding of the lab

material. The students will be required to implement the required optimizations in a manner that best
exploits the performance potential of the application. The functions for Optimizations 1, 2, and 3

block2D_opt_3 in the file

Students choosing this lab will need to implement Optimizations 1, 2, and 3 in the file
(explained in Section 2) is provided for

main.cu file.

Lab 1: 2-D blocking and Register Tiling

Lab 1.2: Students choosing this lab will be provided with the kernels
block2D_shared for reference. The students will need to implement only Optimiz
detailed below in the file kernels1.2.cu
main.cu file.

Optimization 1: Analyze the given kernel in detail. Every thread loads 7 global memory
elements, thus meaning that even neighbor
repetitively. Thus, this indicates good potential for performance improvement from data reuse.
Provided below is a rough outline of the logical steps needed to arrive at an optimized kernel. Note that
multiple lines of code may be necessary to implement each of these logical steps.

Step1: Declare a shared memory structure to be used for data sharing. Determine the appropriate
size from your analysis of the problem.

Step 2: For each frame along the z
into the shared memory structure. Ensure that synchronization is effectively used to ensure data
consistency.

Step 3: For each frame along the z
elements for the output point.

Step 4: Change the kernel launch commands within the main function to invoke kernel
block2D_opt_1.

Step 5: Once you get a working impl
different combinations to find the best performing solution.

 Before Optimization 1

GPU Time

//Pseudo Code: Load elements into shared memory
for(each frame along z
 if(indices within range)
 shared_mem[index1] = data[index2];
 syncthreads();

 if(indices within range)
 output[index] = Weighted combination of neighboring

 syncthreads();
}

Fig 3: Pseudo Code for Optimization 1, Step 2 and Step 3

9

Students choosing this lab will be provided with the kernels block2D_naive
for reference. The students will need to implement only Optimiz

kernels1.2.cu. Make sure that the file kernels1.2.cu

Analyze the given kernel in detail. Every thread loads 7 global memory
elements, thus meaning that even neighboring threads that share data points load the same point
repetitively. Thus, this indicates good potential for performance improvement from data reuse.
Provided below is a rough outline of the logical steps needed to arrive at an optimized kernel. Note that
multiple lines of code may be necessary to implement each of these logical steps.

Declare a shared memory structure to be used for data sharing. Determine the appropriate
size from your analysis of the problem.

For each frame along the z-axis, threads should load data points in collaborative fashion
into the shared memory structure. Ensure that synchronization is effectively used to ensure data

For each frame along the z-axis, compute the weighted combination of nearest neighbor
elements for the output point.

Change the kernel launch commands within the main function to invoke kernel

Once you get a working implementation of the above methodology, experiment with
different combinations to find the best performing solution.

Table 1

Before Optimization 1 After Optimization 1

//Pseudo Code: Load elements into shared memory
for(each frame along z -axis){

if(indices within range)
shared_mem[index1] = data[index2];

if(indices within range)
output[index] = Weighted combination of neighboring

 elements;

Fig 3: Pseudo Code for Optimization 1, Step 2 and Step 3

block2D_naive and
for reference. The students will need to implement only Optimizations 2 and 3

kernels1.2.cu is included in the

Analyze the given kernel in detail. Every thread loads 7 global memory
ing threads that share data points load the same point

repetitively. Thus, this indicates good potential for performance improvement from data reuse.
Provided below is a rough outline of the logical steps needed to arrive at an optimized kernel. Note that
multiple lines of code may be necessary to implement each of these logical steps.

Declare a shared memory structure to be used for data sharing. Determine the appropriate

xis, threads should load data points in collaborative fashion
into the shared memory structure. Ensure that synchronization is effectively used to ensure data

axis, compute the weighted combination of nearest neighbor

Change the kernel launch commands within the main function to invoke kernel

ementation of the above methodology, experiment with

Speedup

output[index] = Weighted combination of neighboring

Fig 3: Pseudo Code for Optimization 1, Step 2 and Step 3

Lab 1: 2-D blocking and Register Tiling

Optimization 2: Analyze the kernel you are working with in
you load the (k-1), k, and (k+1)th

means that for the next frame, only the (k+2)
and (k+1)th frame were already fetched in the previous iteration. Provided below is a rough outline of
the logical steps needed to arrive at an optimized kernel. Note that multiple lines of code may be
necessary to implement each of these logical steps.
kernels.cu) is provided as additional reference, for those students choosing Lab 1.2.

Step 1: Determine the appropriate size of the declared shared memory structure.

Step 2: Insert a prologue that loads the very first 2 required z
into registers/shared memory respectively. This is to make sure that the first iteration of the inner
loop has all the required z-frames. You may also decide to store all frames(top, bottom and

current) in shared memory in which case, your code will look different from the example pseudo
codes shown.

Step 3: Within the inner for
value from the top frame into a register before computation. After computation, for the next
iteration, the current frame becomes the bottom one, and the top frame becomes the current
frame. Thus, note that within each ite
be loaded from global memory.

//Declaring shared memory structures to hold 3 fram es
__shared current;
float bottom, top;

//Prologue
if(indices within range){

 bottom = data[index]; //Corresponding data from Fra me 0

 //Threads load collaboratively into shared memory
 current frame = {Load frame 1};
 __syncthreads();
 }

Fig 4: Pseudo

10

Analyze the kernel you are working with in detail. Note that for each z
th frame (alternatively called the bottom, current and top frames). This

means that for the next frame, only the (k+2)th frame needs to be loaded from global memory, as the k
frame were already fetched in the previous iteration. Provided below is a rough outline of

the logical steps needed to arrive at an optimized kernel. Note that multiple lines of code may be
necessary to implement each of these logical steps. Note that the kernel block2D_opt_1 (defined in
kernels.cu) is provided as additional reference, for those students choosing Lab 1.2.

: Determine the appropriate size of the declared shared memory structure.

Insert a prologue that loads the very first 2 required z-frame values from global memory
into registers/shared memory respectively. This is to make sure that the first iteration of the inner

frames. You may also decide to store all frames(top, bottom and

current) in shared memory in which case, your code will look different from the example pseudo

Within the inner for-loop that iterates over the frames on the z-axis, load the next required
value from the top frame into a register before computation. After computation, for the next
iteration, the current frame becomes the bottom one, and the top frame becomes the current
frame. Thus, note that within each iteration of the for-loop, only the required top frame needs to
be loaded from global memory.

//Declaring shared memory structures to hold 3 fram es

if(indices within range){

bottom = data[index]; //Corresponding data from Fra me 0

//Threads load collaboratively into shared memory
current frame = {Load frame 1};
__syncthreads();

Fig 4: Pseudo Code for Optimization 2, Step 1 and Step 2

detail. Note that for each z-frame k,
frame (alternatively called the bottom, current and top frames). This

frame needs to be loaded from global memory, as the k
frame were already fetched in the previous iteration. Provided below is a rough outline of

the logical steps needed to arrive at an optimized kernel. Note that multiple lines of code may be
kernel block2D_opt_1 (defined in

kernels.cu) is provided as additional reference, for those students choosing Lab 1.2.

: Determine the appropriate size of the declared shared memory structure.

frame values from global memory
into registers/shared memory respectively. This is to make sure that the first iteration of the inner

frames. You may also decide to store all frames(top, bottom and

current) in shared memory in which case, your code will look different from the example pseudo-

axis, load the next required
value from the top frame into a register before computation. After computation, for the next
iteration, the current frame becomes the bottom one, and the top frame becomes the current

loop, only the required top frame needs to

bottom = data[index]; //Corresponding data from Fra me 0

Code for Optimization 2, Step 1 and Step 2

Lab 1: 2-D blocking and Register Tiling

Step 4: Change the kernel launch commands within the
block2D_opt_2.

 Before Optimization 2

GPU Time

Optimization 3: In the kernel that you are working with, note that each thread
one output point. By having each thread compute multiple points, we would be implementing the
register tiling optimization detailed in the lecture. In this optimization, the student will modify the
kernel to compute 2 output points instea

Step 1: Make sure that the sizes of the declared shared memory elements are large enough to
hold input data for 2 output points.

Step 2: Modify the loads from global memory to shared memory to load the additional data
points required for computing
prologue and the frame update for the next iteration.

for(each frame along z
 if(indices within range)
 top = data[index]; //Load next frame data from glob al mem

 syncthreads();

 if(indices within range)
 output[index] = Weighted combination of
 neighboring elements;

 syncthreads();

 bottom = Current[index];

 //Threads copy data collaboratively into shared mem ory
 current frame = {Copy data from top};
}

Fig 5: Pseudo Code for Optimization 2, Step

11

Change the kernel launch commands within the main function to invoke kernel

Table 2

Before Optimization 2 After Optimization 2

In the kernel that you are working with, note that each thread
one output point. By having each thread compute multiple points, we would be implementing the
register tiling optimization detailed in the lecture. In this optimization, the student will modify the
kernel to compute 2 output points instead of 1.

Make sure that the sizes of the declared shared memory elements are large enough to
hold input data for 2 output points.

Modify the loads from global memory to shared memory to load the additional data
points required for computing output point 2. If required, you may also need to modify the
prologue and the frame update for the next iteration.

for(each frame along z -axis){
if(indices within range)

top = data[index]; //Load next frame data from glob al mem

if(indices within range)
output[index] = Weighted combination of

neighboring elements;

bottom = Current[index];

//Threads copy data collaboratively into shared mem ory
current frame = {Copy data from top};

Fig 5: Pseudo Code for Optimization 2, Step 3

function to invoke kernel

Speedup

In the kernel that you are working with, note that each thread computes exactly
one output point. By having each thread compute multiple points, we would be implementing the
register tiling optimization detailed in the lecture. In this optimization, the student will modify the

Make sure that the sizes of the declared shared memory elements are large enough to

Modify the loads from global memory to shared memory to load the additional data
output point 2. If required, you may also need to modify the

top = data[index]; //Load next frame data from glob al mem

//Threads copy data collaboratively into shared mem ory

Lab 1: 2-D blocking and Register Tiling

Step 3: Add additional computation steps to load the top frames corresponding to the 2 output
points compute the 2nd output point.

Step 4: Change the kernel launch commands within the main function to invoke kernel
block2D_opt_3, and also make necessary changes (if
parameters, such as block,

//Declaring shared memory structures to hold 3 fram es for 2 //output
points

__shared current_combined;
float top1, top2, bottom1, bottom2;

//Prologue
if(indices within range){
 Bottom1 = data[index1];//Load Frame 0 for output po int 1
 bottom2 = data[index2];//Load Frame 0 for output po int 2

 //Threads load collaboratively into shared memory
 Current_combined = {Load frame 1 for o/p points

 }

Fig 6: Pseudo Code for Optimization 3, Step 1 and 2

for(each frame along z

 if(indices within ran
 top1 = data[index1]; //Load data from next frame fo r o/p point 1

 top2 = data[index2]; //Load data from next frame fo r o/p point 2

 syncthreads();

 if(indices within range){
 output[index1] = Weighted combination of index1

 }
 if(indices within range){
 output[index2] = Weighted combination of index2

 }

 syncthreads();

 bottom1 = Current[index1];
 bottom2 = Current[index2];

 //Threads copy data collaboratively from top1 and
 Current_combined = {Copy data from top1 and top2 co llaboratively};
}

Fig 7: Pseudo Code for Optimization 3, Step 3

12

Add additional computation steps to load the top frames corresponding to the 2 output
points compute the 2nd output point.

Change the kernel launch commands within the main function to invoke kernel
and also make necessary changes (if required) to the kernel configuration

, grid etc.

//Declaring shared memory structures to hold 3 fram es for 2 //output

__shared current_combined;
float top1, top2, bottom1, bottom2;

if(indices within range){
Bottom1 = data[index1];//Load Frame 0 for output po int 1
bottom2 = data[index2];//Load Frame 0 for output po int 2

//Threads load collaboratively into shared memory
Current_combined = {Load frame 1 for o/p points 1 and 2};

Fig 6: Pseudo Code for Optimization 3, Step 1 and 2

for(each frame along z -axis){

if(indices within ran ge)
top1 = data[index1]; //Load data from next frame fo r o/p point 1

top2 = data[index2]; //Load data from next frame fo r o/p point 2

if(indices within range){
output[index1] = Weighted combination of index1

neighboring elements;

if(indices within range){
output[index2] = Weighted combination of index2

neighboring elements;

bottom1 = Current[index1];
bottom2 = Current[index2];

//Threads copy data collaboratively from top1 and top2
Current_combined = {Copy data from top1 and top2 co llaboratively};

Fig 7: Pseudo Code for Optimization 3, Step 3

Add additional computation steps to load the top frames corresponding to the 2 output

Change the kernel launch commands within the main function to invoke kernel
required) to the kernel configuration

//Declaring shared memory structures to hold 3 fram es for 2 //output

Bottom1 = data[index1];//Load Frame 0 for output po int 1
bottom2 = data[index2];//Load Frame 0 for output po int 2

1 and 2};

Fig 6: Pseudo Code for Optimization 3, Step 1 and 2

top1 = data[index1]; //Load data from next frame fo r o/p point 1

top2 = data[index2]; //Load data from next frame fo r o/p point 2

output[index1] = Weighted combination of index1

output[index2] = Weighted combination of index2

top2
Current_combined = {Copy data from top1 and top2 co llaboratively};

Lab 1: 2-D blocking and Register Tiling

 Before Optimization 3

GPU Time

4. Questions

Of all the configurations you tested, which ones performed best?
you to analyze the performance better are: What is the optimal size of the shared memory structure?
Which are the nearest neighbor elements that have a high degree of sharing with neighboring threads?
How can global memory loads be performed so a
infrastructure? (Hint: coalesced accesses).
loads performed best. Why? Can you think of other ways to load data into a 2
structure that could give better performance? For Optimization 3, how did you choose the 2 output
points that a single thread computes? Are there other combinations that you could have chosen?

13

Table 3

Before Optimization 3 After Optimization 3s

Of all the configurations you tested, which ones performed best? A few questions that
you to analyze the performance better are: What is the optimal size of the shared memory structure?
Which are the nearest neighbor elements that have a high degree of sharing with neighboring threads?
How can global memory loads be performed so as to make best use of the underlying memory
infrastructure? (Hint: coalesced accesses). For Optimization 1, what patterns of the global memory
loads performed best. Why? Can you think of other ways to load data into a 2

give better performance? For Optimization 3, how did you choose the 2 output
points that a single thread computes? Are there other combinations that you could have chosen?

Speedup

A few questions that could get
you to analyze the performance better are: What is the optimal size of the shared memory structure?
Which are the nearest neighbor elements that have a high degree of sharing with neighboring threads?

s to make best use of the underlying memory
For Optimization 1, what patterns of the global memory

loads performed best. Why? Can you think of other ways to load data into a 2-D shared memory
give better performance? For Optimization 3, how did you choose the 2 output

points that a single thread computes? Are there other combinations that you could have chosen?

Lab 2A: Data Layout Transformation

Lab 2A: Data Layout Transformation

John Stratton (stratton@crhc.uiuc.edu), I

1. Objective

The purpose of this lab is to provide a real application environment (Lattice
to explore the performance effects of changing the layout of a multidimensional array of multi
data structures affects performance of GPU code accessing that array. This lab will draw on the lecture
material on data layout, coalescing, and warp scheduling.

2. Examine and Understand the LBM Kernel

The parboil benchmark 'lbm' contains the data and source code, which
correctly with the parboil interface as it is. Note that the output comparison step will take several
seconds.

$> ./parboil run lbm cuda short
Parboil parallel benchmark suite, version 0.2
LBM_allocateGrid: allocated 130.9 MByte
MAIN_printInfo:
 grid size : 100 x 100 x 130 = 1.30 * 10^6 Cell s
 nTimeSteps : 100
 result file : run/short/reference.dat
 action : store
 simulation type: lid
 obstacle file : in

LBM_allocateGrid: allocated 130.9 MByte
LBM_allocateGrid: allocated 130.9 MByte
LBM_showGridStatistics:
 nObstacleCells: 112539 nAccelCells: 18432 nFluid Cells: 1169029
 minRho: 1.0000 maxRho: 1.0000 mass:
 minU: 0.000000e+00 maxU: 0.000000e+00

timestep: 64
LBM_allocateGrid: allocated 130.9 MByte
LBM_showGridStatistics:
 nObstacleCells: 112539 nAccelCells: 18432 nFluid Cells: 1169029
 minRho: 0.9344 maxRho: 1.0662 mass: 1.2
 minU: 3.789891e

IO: 0.025683
GPU: 1.399837
Copy: 1.117329
Driver: 0.000507
Compute: 0.976847
CPU/GPU Overlap: 0.110463
Pass

14

Lab 2A: Data Layout Transformation

John Stratton (stratton@crhc.uiuc.edu), I-Jui Sung (sung10@illinois.edu)

The purpose of this lab is to provide a real application environment (Lattice
to explore the performance effects of changing the layout of a multidimensional array of multi

ects performance of GPU code accessing that array. This lab will draw on the lecture
material on data layout, coalescing, and warp scheduling.

2. Examine and Understand the LBM Kernel

The parboil benchmark 'lbm' contains the data and source code, which
correctly with the parboil interface as it is. Note that the output comparison step will take several

$> ./parboil run lbm cuda short
Parboil parallel benchmark suite, version 0.2
LBM_allocateGrid: allocated 130.9 MByte

grid size : 100 x 100 x 130 = 1.30 * 10^6 Cell s
nTimeSteps : 100
result file : run/short/reference.dat
action : store
simulation type: lid -driven cavity
obstacle file : in put/short/100_100_130_ldc.of

LBM_allocateGrid: allocated 130.9 MByte
LBM_allocateGrid: allocated 130.9 MByte
LBM_showGridStatistics:

nObstacleCells: 112539 nAccelCells: 18432 nFluid Cells: 1169029
minRho: 1.0000 maxRho: 1.0000 mass: 1.300000e+06
minU: 0.000000e+00 maxU: 0.000000e+00

LBM_allocateGrid: allocated 130.9 MByte
LBM_showGridStatistics:

nObstacleCells: 112539 nAccelCells: 18432 nFluid Cells: 1169029
minRho: 0.9344 maxRho: 1.0662 mass: 1.2 99998e+06
minU: 3.789891e -08 maxU: 2.634398e-02

CPU/GPU Overlap: 0.110463

Lab 2A: Data Layout Transformation

ng (sung10@illinois.edu)

The purpose of this lab is to provide a real application environment (Lattice-Botlzmann Method)
to explore the performance effects of changing the layout of a multidimensional array of multi-element

ects performance of GPU code accessing that array. This lab will draw on the lecture

The parboil benchmark 'lbm' contains the data and source code, which should compile and run
correctly with the parboil interface as it is. Note that the output comparison step will take several

grid size : 100 x 100 x 130 = 1.30 * 10^6 Cell s

put/short/100_100_130_ldc.of

nObstacleCells: 112539 nAccelCells: 18432 nFluid Cells: 1169029
1.300000e+06

nObstacleCells: 112539 nAccelCells: 18432 nFluid Cells: 1169029
99998e+06

Lab 2A: Data Layout Transformation

All source code for the lab can be found in the benchmarks/lbm/src/cuda subdirectory of the
provided lab package. The LBM
cavity system. Aside from initialization and finalization, the entire simulation is performed in the loop
in the 'main' function in the file main.cu.

for(t = 1; t <= param.nTimeSteps; t++
 pb_SwitchToTimer(&timers, pb_TimerID_GPU);
 CUDA_LBM_performStreamCollide(*CUDA_srcGrid, *CUDA _dstGrid);
 …
}

The kernel in lbm_kernels.cu will be invoked to advance the simulation forward one timestep.
The kernel configuration parameter
CUDA_LBM_performStreamCollide function from lines 37 to 44.

void CUDA_LBM_performStreamCollide(LBM_Grid srcGri d, LBM_Grid dstGrid) {
 dim3 dimBlock, dimGrid;
 dimBlock.x = SIZE_X;
 dimGrid.x = SIZE_Y;
 dimGrid.y = SIZE_Z;
 dimBlock.y = dimBlock.z = dimGrid.z = 1;
 performStreamCollide_kernel<<<dimGrid, dimBlock>>>(srcGrid,
dstGrid);
}

Examining the kernel in lbm_kernels.cu, observe that the kernel initially copi
cell from global memory to private variables, computes some output based on those private variables,
and then writes output to global memory. For this lab, the computation is not particularly important to
focus on.

The LBM simulation grid is a regular lattice division of physical space, where each cell contains
19 floating-point values recording the fluid flow in the 18 3
South, East, West, Top, Bottom, and every compatible pair in that set)
cell overall (“Center” or “C”, to keep naming convention). Finally, each cell contains a word of flags
for determining whether the cell is an obstacle, fluid or driving cell. For the purposes of this lab, all
you need to understand is that the data structure for a cell contains 20 values referenced by one
character names.

The macros SWEEPX, SWEEPY and SWEEPZ name the variables defining the X, Y and Z
coordinate of a cell. The macros SRC_* and DST_* use those
that cell should find its input and output values for each named field.

15

All source code for the lab can be found in the benchmarks/lbm/src/cuda subdirectory of the
provided lab package. The LBM application of this lab assignment simulates a closed, lid
cavity system. Aside from initialization and finalization, the entire simulation is performed in the loop
in the 'main' function in the file main.cu.

for(t = 1; t <= param.nTimeSteps; t++) {
pb_SwitchToTimer(&timers, pb_TimerID_GPU);
CUDA_LBM_performStreamCollide(*CUDA_srcGrid, *CUDA _dstGrid);

The kernel in lbm_kernels.cu will be invoked to advance the simulation forward one timestep.
The kernel configuration parameters and launch are shown in the lbm.cu file in the
CUDA_LBM_performStreamCollide function from lines 37 to 44.

void CUDA_LBM_performStreamCollide(LBM_Grid srcGri d, LBM_Grid dstGrid) {
dim3 dimBlock, dimGrid;
dimBlock.x = SIZE_X;
dimGrid.x = SIZE_Y;
dimGrid.y = SIZE_Z;
dimBlock.y = dimBlock.z = dimGrid.z = 1;
performStreamCollide_kernel<<<dimGrid, dimBlock>>>(srcGrid,

Examining the kernel in lbm_kernels.cu, observe that the kernel initially copi
cell from global memory to private variables, computes some output based on those private variables,
and then writes output to global memory. For this lab, the computation is not particularly important to

n grid is a regular lattice division of physical space, where each cell contains
point values recording the fluid flow in the 18 3-D adjacent and diagonal directions (North,

South, East, West, Top, Bottom, and every compatible pair in that set), plus a fluid density value for the
cell overall (“Center” or “C”, to keep naming convention). Finally, each cell contains a word of flags
for determining whether the cell is an obstacle, fluid or driving cell. For the purposes of this lab, all

to understand is that the data structure for a cell contains 20 values referenced by one

The macros SWEEPX, SWEEPY and SWEEPZ name the variables defining the X, Y and Z
coordinate of a cell. The macros SRC_* and DST_* use those variables to compute an index for where
that cell should find its input and output values for each named field.

All source code for the lab can be found in the benchmarks/lbm/src/cuda subdirectory of the
application of this lab assignment simulates a closed, lid-driven

cavity system. Aside from initialization and finalization, the entire simulation is performed in the loop

CUDA_LBM_performStreamCollide(*CUDA_srcGrid, *CUDA _dstGrid);

The kernel in lbm_kernels.cu will be invoked to advance the simulation forward one timestep.
s and launch are shown in the lbm.cu file in the

void CUDA_LBM_performStreamCollide(LBM_Grid srcGri d, LBM_Grid dstGrid) {

performStreamCollide_kernel<<<dimGrid, dimBlock>>>(srcGrid,

Examining the kernel in lbm_kernels.cu, observe that the kernel initially copies all fields of one
cell from global memory to private variables, computes some output based on those private variables,
and then writes output to global memory. For this lab, the computation is not particularly important to

n grid is a regular lattice division of physical space, where each cell contains
D adjacent and diagonal directions (North,

, plus a fluid density value for the
cell overall (“Center” or “C”, to keep naming convention). Finally, each cell contains a word of flags
for determining whether the cell is an obstacle, fluid or driving cell. For the purposes of this lab, all

to understand is that the data structure for a cell contains 20 values referenced by one- or two-

The macros SWEEPX, SWEEPY and SWEEPZ name the variables defining the X, Y and Z
variables to compute an index for where

Lab 2A: Data Layout Transformation

3. Changing the Data Layout

a) Gather vs. Scatter

Description: Each thread index must read in inputs from all neighboring cells in the
time step, and write an output to all neighboring cells for the next time step. In the “gather” method,
the data structure for a particular cell holds all the values that cell computed in the previous time step.
Therefore, every thread must “gat
method instead stores in each cell the values all its neighboring cells computed for it on the last time
step. Therefore the input data for a cell in the current time step is all wit
write its output into its neighboring cell's fields.

The code has been designed such that only the preprocessor definition in line 33 of
layout_config.h need be changed to choose between gather and scatter.

#if 1
#define GATHER
#else
#define SCATTER
#endif

Assignment: Test both gather and scatter compilations, and record the performance as a baseline
for future experiments. These commands will be used to recompile and execute LBM for each test.

(edit benchmarks/lbm/src/
$> ./parboil clean lbm cuda
$> ./parboil run lbm cuda short

b) Array of Structures vs. Structure of Arrays

Description: Note that the flattening function CALC_INDEX computes a 1D index from a 4D
index, with the dimensions, in orde
from x, y and z according to row-
by the number of elements in a cell, and adds the particular offset of the ele

#define CALC_INDEX(x,y,z,e) (e + (N_CELL_ENTRIES *

16

3. Changing the Data Layout

Each thread index must read in inputs from all neighboring cells in the
time step, and write an output to all neighboring cells for the next time step. In the “gather” method,
the data structure for a particular cell holds all the values that cell computed in the previous time step.
Therefore, every thread must “gather” its own inputs from fields in its neighboring cells. The “scatter”
method instead stores in each cell the values all its neighboring cells computed for it on the last time
step. Therefore the input data for a cell in the current time step is all within its own fields, but it must
write its output into its neighboring cell's fields.

The code has been designed such that only the preprocessor definition in line 33 of
layout_config.h need be changed to choose between gather and scatter.

Test both gather and scatter compilations, and record the performance as a baseline
for future experiments. These commands will be used to recompile and execute LBM for each test.

(edit benchmarks/lbm/src/ cuda/layout_config.h)
$> ./parboil clean lbm cuda
$> ./parboil run lbm cuda short

b) Array of Structures vs. Structure of Arrays

Note that the flattening function CALC_INDEX computes a 1D index from a 4D
index, with the dimensions, in order, being element, x, y, and z. In other words, it computes a 1D index

-major layout rules (see lectures slides on layout), multiplies that index
by the number of elements in a cell, and adds the particular offset of the element requested.

#define CALC_INDEX(x,y,z,e) (e + (N_CELL_ENTRIES * \
 ((x)+(y)*PADDED_X+(z)*PADDED_X*PADDED_Y)))

Each thread index must read in inputs from all neighboring cells in the previous
time step, and write an output to all neighboring cells for the next time step. In the “gather” method,
the data structure for a particular cell holds all the values that cell computed in the previous time step.

her” its own inputs from fields in its neighboring cells. The “scatter”
method instead stores in each cell the values all its neighboring cells computed for it on the last time

hin its own fields, but it must

The code has been designed such that only the preprocessor definition in line 33 of

Test both gather and scatter compilations, and record the performance as a baseline
for future experiments. These commands will be used to recompile and execute LBM for each test.

Note that the flattening function CALC_INDEX computes a 1D index from a 4D
. In other words, it computes a 1D index

major layout rules (see lectures slides on layout), multiplies that index
ment requested.

((x)+(y)*PADDED_X+(z)*PADDED_X*PADDED_Y)))

Lab 2A: Data Layout Transformation

This is called the “array of structures” layout, because if the cells were declared as C structures
with named fields, this is the layout that would result, with fields highlighted if several threads each
accessed a particular field of their own cell.

Assignment: Change the CALC_INDEX macro on lines 29 and 39 of layout_config.h so that it
instead represents a “structure of arrays”. To do so, the mapping function must compute a 1D index
from x, y and z as before, but then multip
dimensions and add that number to the 1D index.

Solution:

#define CALC_INDEX(x,y,z,e) (TOTAL_PADDED_CELLS*e +

The 1D index from x, y and z is not scaled at all, in contrast with the previous case. This layout
is called the “structure of arrays” layout because it is the layout that would result in declaring a C
structure containing, for each component, an array for the e
component. The transformed layout conceptually looks more like this.

Measure the performance again, with both scatter and gather variations, and record them. Begin
by copying your previous run times in the “Array of Structures” column.

17

This is called the “array of structures” layout, because if the cells were declared as C structures
named fields, this is the layout that would result, with fields highlighted if several threads each

accessed a particular field of their own cell.

Change the CALC_INDEX macro on lines 29 and 39 of layout_config.h so that it
instead represents a “structure of arrays”. To do so, the mapping function must compute a 1D index
from x, y and z as before, but then multiply element by the total size of the grid in the x, y and z
dimensions and add that number to the 1D index.

#define CALC_INDEX(x,y,z,e) (TOTAL_PADDED_CELLS*e + \
 ((x)+(y)*PADDED_X+(z)*PADDED_X*PADDED_Y))

index from x, y and z is not scaled at all, in contrast with the previous case. This layout
is called the “structure of arrays” layout because it is the layout that would result in declaring a C
structure containing, for each component, an array for the entire simulation lattice's values of that
component. The transformed layout conceptually looks more like this.

again, with both scatter and gather variations, and record them. Begin
by copying your previous run times in the “Array of Structures” column.

This is called the “array of structures” layout, because if the cells were declared as C structures
named fields, this is the layout that would result, with fields highlighted if several threads each

Change the CALC_INDEX macro on lines 29 and 39 of layout_config.h so that it
instead represents a “structure of arrays”. To do so, the mapping function must compute a 1D index

ly element by the total size of the grid in the x, y and z

((x)+(y)*PADDED_X+(z)*PADDED_X*PADDED_Y))

index from x, y and z is not scaled at all, in contrast with the previous case. This layout
is called the “structure of arrays” layout because it is the layout that would result in declaring a C

ntire simulation lattice's values of that

again, with both scatter and gather variations, and record them. Begin

Lab 2A: Data Layout Transformation

c) Adding Padding

Description: In addition to changing the order of indexes, you can add padding to any of t
or z dimensions to change the alignment properties of the data structure. For instance, by adding a
padding of 28 elements to the X dimension, the 1D index computed from x, y and z will always be a
multiple of 128 if x is 0.

Assignment: Set the padding of the x dimension to 28 by changing the value of PADDING_X in
line 15 of layout_config.h, and measure the performance again.

Solution: change layout_config.h line 15 to

#define PADDING_X (28)

GPU Time: Padded Arrays

Array of Structures

Structure of Arrays

4. Questions

Of all the configurations you tested, which ones performed best? Of the SoA/AoS and
gather/scatter combinations, which ones were most improved by padding? Why? Can you think of any
other padding or flattening function combinations that may perform even better? Try them out, and see
if you can explain their performance as well.

18

Description: In addition to changing the order of indexes, you can add padding to any of t
or z dimensions to change the alignment properties of the data structure. For instance, by adding a
padding of 28 elements to the X dimension, the 1D index computed from x, y and z will always be a

padding of the x dimension to 28 by changing the value of PADDING_X in
line 15 of layout_config.h, and measure the performance again.

Solution: change layout_config.h line 15 to

#define PADDING_X (28)

Scatter

Of all the configurations you tested, which ones performed best? Of the SoA/AoS and
gather/scatter combinations, which ones were most improved by padding? Why? Can you think of any

flattening function combinations that may perform even better? Try them out, and see
if you can explain their performance as well.

Description: In addition to changing the order of indexes, you can add padding to any of the x, y
or z dimensions to change the alignment properties of the data structure. For instance, by adding a
padding of 28 elements to the X dimension, the 1D index computed from x, y and z will always be a

padding of the x dimension to 28 by changing the value of PADDING_X in

Gather

Of all the configurations you tested, which ones performed best? Of the SoA/AoS and
gather/scatter combinations, which ones were most improved by padding? Why? Can you think of any

flattening function combinations that may perform even better? Try them out, and see

Lab 2B: Binning with Uniform Distribution

Lab 2B: Binning with Uniform Distributions

Hee-Seok Kim (kim868@illinois.edu), Christopher Rodriguez (cirodrig@crhc.uiuc.e

1. Objective

This lab is an introduction to binning as a technique to help solve problems efficiently. As a case
study, we investigate the calculation of electrostatic potential maps, which consists of a regularly
spaced lattice of points in a space co
will learn how binning can help solve problems on
discover how different tweaks in binning could lead to significant performance variation.
will be challenged with non-uniform input data, which does not lend itself to uniform binning thus
motivating new and innovative approaches.

2. Prerequisite

In order to go through this lab, you need to have understanding of basic C and CUDA
programming skills.

3. Brief Review: What is Binning? What Binning is for?

Binning is a process that groups data to form a chunk called
representative property of data inside the bin. When data are properly binned, the problem solving
could be coarsened due to the representative property of bin. This can bring great optimization
opportunity with higher abstraction on input data.

Binning is useful for various algorithms dealing with huge data. Ray tracing, for example, uses
KD-tree which is a kind of non-uniform sized bins that divides a scene into multiple bounding boxes to
group polygons close to each other. We can ignore many polygons inside bounding boxes that have no
chance of colliding with a ray being traced.

4. Problem Statement: Columb

The electrostatic interactions between atoms are of particular importance in molecular simulation.
Atoms are modeled as point charges by assigning to each atom
Closely related to the electrostatic
potential V at a position r� expressed here as a sum over all

19

Lab 2B: Binning with Uniform Distributions

Seok Kim (kim868@illinois.edu), Christopher Rodriguez (cirodrig@crhc.uiuc.e

This lab is an introduction to binning as a technique to help solve problems efficiently. As a case
study, we investigate the calculation of electrostatic potential maps, which consists of a regularly
spaced lattice of points in a space containing the summed potential contributions from the atoms. You

nning can help solve problems on both CPU and GPU efficiently. Also you will
discover how different tweaks in binning could lead to significant performance variation.

uniform input data, which does not lend itself to uniform binning thus
motivating new and innovative approaches.

In order to go through this lab, you need to have understanding of basic C and CUDA

3. Brief Review: What is Binning? What Binning is for?

Binning is a process that groups data to form a chunk called bin
representative property of data inside the bin. When data are properly binned, the problem solving

be coarsened due to the representative property of bin. This can bring great optimization
opportunity with higher abstraction on input data.

Binning is useful for various algorithms dealing with huge data. Ray tracing, for example, uses
uniform sized bins that divides a scene into multiple bounding boxes to

group polygons close to each other. We can ignore many polygons inside bounding boxes that have no
chance of colliding with a ray being traced.

4. Problem Statement: Columbic Potential

The electrostatic interactions between atoms are of particular importance in molecular simulation.
Atoms are modeled as point charges by assigning to each atom I at position ���
Closely related to the electrostatic force and interaction energy between atoms is the electrostatic

expressed here as a sum over all N atoms,

Lab 2B: Binning with Uniform Distributions

Seok Kim (kim868@illinois.edu), Christopher Rodriguez (cirodrig@crhc.uiuc.edu)

This lab is an introduction to binning as a technique to help solve problems efficiently. As a case
study, we investigate the calculation of electrostatic potential maps, which consists of a regularly

ntaining the summed potential contributions from the atoms. You
both CPU and GPU efficiently. Also you will

discover how different tweaks in binning could lead to significant performance variation. Finally, you
uniform input data, which does not lend itself to uniform binning thus

In order to go through this lab, you need to have understanding of basic C and CUDA

bin. Each bin can have a
representative property of data inside the bin. When data are properly binned, the problem solving

be coarsened due to the representative property of bin. This can bring great optimization

Binning is useful for various algorithms dealing with huge data. Ray tracing, for example, uses
uniform sized bins that divides a scene into multiple bounding boxes to

group polygons close to each other. We can ignore many polygons inside bounding boxes that have no

The electrostatic interactions between atoms are of particular importance in molecular simulation.
���, a fixed partial charge qi.

force and interaction energy between atoms is the electrostatic

Lab 2B: Binning with Uniform Distribution

In this lab, Eq. 1 is sampled at regularly spaced points over a volume to generate a map of the
electrostatic potential in that volume. In this case,
points. Setting the function���
contributed by all atoms to position
is improved by choosing s(r) to yield a cutoff potential truncated beyond a fixed cutoff distance
common choice is given by

���� � 	1 �
��

�

�

�

, ��� �

0 , ���������
which smoothly shifts the potential to zero beyond

the limit as rc approaches infinity. Figure 1 illustrates how the electrostatic potential map is computed
and the rendering of the map accordingly.

The computation of electrostatic potential maps is directly applicable to ion placement methods
used to initially setup a biomolecular system. Moreover,
the completed simulation; for instance, when visualizing the electrostatic contour lines around a
molecular surface.

5. Approaches: From Naive to Binning

5.1 Naive Approach

The naive approach follows the e
point on the output grid and on each point it sums up the Columbic Potential from atoms around it. The
implementation is given in benchmarks/cp/src/1

Figure 1: An Electrostatic Potential Map in a Simulation Volume

20

……. Eq 1

In this lab, Eq. 1 is sampled at regularly spaced points over a volume to generate a map of the
electrostatic potential in that volume. In this case, ��ranges over a set of M

�� � 1calculates the full (infinite distance) electrostatic potential
contributed by all atoms to position��, requiring quadratic computational work. Algorithmic efficiency

to yield a cutoff potential truncated beyond a fixed cutoff distance

�

������

which smoothly shifts the potential to zero beyond rc and regains the full electrostatic potential in
approaches infinity. Figure 1 illustrates how the electrostatic potential map is computed

rendering of the map accordingly.

The computation of electrostatic potential maps is directly applicable to ion placement methods
used to initially setup a biomolecular system. Moreover, it is useful for the anal
the completed simulation; for instance, when visualizing the electrostatic contour lines around a

5. Approaches: From Naive to Binning

The naive approach follows the equations shown above as Eq. 1 and Eq. 2. It iterates over every
point on the output grid and on each point it sums up the Columbic Potential from atoms around it. The

benchmarks/cp/src/1.

Figure 1: An Electrostatic Potential Map in a Simulation Volume

……. Eq 1

In this lab, Eq. 1 is sampled at regularly spaced points over a volume to generate a map of the
M regularly spaced lattice

he full (infinite distance) electrostatic potential
, requiring quadratic computational work. Algorithmic efficiency

to yield a cutoff potential truncated beyond a fixed cutoff distance rc. A

Eq. 2

and regains the full electrostatic potential in
approaches infinity. Figure 1 illustrates how the electrostatic potential map is computed

The computation of electrostatic potential maps is directly applicable to ion placement methods
it is useful for the analysis and visualization of

the completed simulation; for instance, when visualizing the electrostatic contour lines around a

quations shown above as Eq. 1 and Eq. 2. It iterates over every
point on the output grid and on each point it sums up the Columbic Potential from atoms around it. The

Figure 1: An Electrostatic Potential Map in a Simulation Volume

Lab 2B: Binning with Uniform Distribution

5.2 Binning Approach

We could get several important observations from the naive implementation as below.

1) It is wasteful to visit all atoms when the cutoff distance is relatively small.

• We can enhance the performance if we efficiently get the list of atoms within the cutoff
distance for any given output grid point.

2) The cut-off distance is fixed through the algorithm run.

• We can create a list of neighboring points that lie within or along the cut off distance in a
fixed size grid space.

With these observations, we could optimize the naive
volume into a set of fixed size cubes that are uniformly distributed. It involves performing spatial
hashing of the atoms into bins of a uniform grid. Then there is a neighborhood of bins that lie within or
straddle the cut off radius for some points in the output grid. Therefore, we could derive another
implementation as below.

Phase 1: Perform spatial hashing of the atoms into bins

In this phase, the simulation vo
illustrated in Figure 2. The number of atoms per bin is almost equal since we assume
uniformly distributed in the simulation volume. You will be given the initial configuration of bi
such as size and capacity of a bin in the code. Nevertheless, some bins m
fall into them due to the fixed capacity of a bin. Obviously these atoms should not be omitted anyway,
so let’s collect them and process naively

When performing the binning, we would like to add extra bins surrounding the simulation
volume. This comes in order to make the computation more regular around the edges of the simulation
volume. Once we extend the simulation volume in this way, we
clipping conditions and so on. We will also use a bounding cube rather
space of an output grid point. Note that these are the basic implementation ideas.
these ideas.

Figure 2: Binning Example of the Simulation Volume

21

l important observations from the naive implementation as below.

1) It is wasteful to visit all atoms when the cutoff distance is relatively small.

We can enhance the performance if we efficiently get the list of atoms within the cutoff
ven output grid point.

off distance is fixed through the algorithm run.

We can create a list of neighboring points that lie within or along the cut off distance in a
fixed size grid space.

With these observations, we could optimize the naive approach if we divide the simulation
volume into a set of fixed size cubes that are uniformly distributed. It involves performing spatial
hashing of the atoms into bins of a uniform grid. Then there is a neighborhood of bins that lie within or

cut off radius for some points in the output grid. Therefore, we could derive another

Phase 1: Perform spatial hashing of the atoms into bins

In this phase, the simulation volume is divided into bins of the same size and capacity as
illustrated in Figure 2. The number of atoms per bin is almost equal since we assume
uniformly distributed in the simulation volume. You will be given the initial configuration of bi
such as size and capacity of a bin in the code. Nevertheless, some bins might not contain all atoms that
fall into them due to the fixed capacity of a bin. Obviously these atoms should not be omitted anyway,
so let’s collect them and process naively later.

When performing the binning, we would like to add extra bins surrounding the simulation
volume. This comes in order to make the computation more regular around the edges of the simulation
volume. Once we extend the simulation volume in this way, we don't need to care about edges and

We will also use a bounding cube rather than a sphere for the search
Note that these are the basic implementation ideas.

Figure 2: Binning Example of the Simulation Volume

l important observations from the naive implementation as below.

1) It is wasteful to visit all atoms when the cutoff distance is relatively small.

We can enhance the performance if we efficiently get the list of atoms within the cutoff

We can create a list of neighboring points that lie within or along the cut off distance in a

approach if we divide the simulation
volume into a set of fixed size cubes that are uniformly distributed. It involves performing spatial
hashing of the atoms into bins of a uniform grid. Then there is a neighborhood of bins that lie within or

cut off radius for some points in the output grid. Therefore, we could derive another

lume is divided into bins of the same size and capacity as
illustrated in Figure 2. The number of atoms per bin is almost equal since we assume that atoms are
uniformly distributed in the simulation volume. You will be given the initial configuration of binning

ight not contain all atoms that
fall into them due to the fixed capacity of a bin. Obviously these atoms should not be omitted anyway,

When performing the binning, we would like to add extra bins surrounding the simulation
volume. This comes in order to make the computation more regular around the edges of the simulation

don't need to care about edges and
than a sphere for the search

Note that these are the basic implementation ideas. Figure 3 illustrates

Lab 2B: Binning with Uniform Distribution

Pseudo code below shows how to create bins.

Phase 2: Create neighborhood list

This phase deals with identification of the neighborhood of a
summation. The shape of neighborhood is precomputed with respect to the binning lattice in the form
of a list of neighbor offsets. As shown in Figure 3(a), the area within the cut off radius forms a sphere
in 3-dimensional space. In this lab, however, we assume that the shape of neighborhood is a bounding
cube that has the sphere inside as shown in Figure 3(b) and (c) to reduce t
though it might cause some degree of inefficiency to the performance.

The following pseudo-code computes the neighborhood list for a bounding cube.

Phase 3: Calculate the electrostatic potential map

This phase calculates the electrostatic potential map using the bins and neighbor list that are done
in the previous phases. The idea is to iterate the

bins = [][BIN_CAPACITY]; // List of arra y
extra_atoms = []; // To be handle d naively later
for each atom a,
____ bin_loc = a.loc / BIN_SIZE; // Spatial hashing, radix sort
____ bin = bins[bin_loc]
____ if bin is not full,
________ bin.add(a);
____ else
________ extra_atoms.add(a);

neighbor_list = [];
For offset from - (cut off radius) to +(cut off radius),
____ // NOTE: uncomment below to make it a bounding sphe re.
____ // if (distance from zero to offset <= cu
____ neighbor_list.add(offset);
}

Figure 3: Illustration of the Simulation Volume Extension

22

Pseudo code below shows how to create bins.

Phase 2: Create neighborhood list

This phase deals with identification of the neighborhood of a region to be used in cutoff
summation. The shape of neighborhood is precomputed with respect to the binning lattice in the form
of a list of neighbor offsets. As shown in Figure 3(a), the area within the cut off radius forms a sphere

e. In this lab, however, we assume that the shape of neighborhood is a bounding
cube that has the sphere inside as shown in Figure 3(b) and (c) to reduce t
though it might cause some degree of inefficiency to the performance.

code computes the neighborhood list for a bounding cube.

Phase 3: Calculate the electrostatic potential map

This phase calculates the electrostatic potential map using the bins and neighbor list that are done
in the previous phases. The idea is to iterate the output grid and for each point neighboring bins are to

bins = [][BIN_CAPACITY]; // List of arra y
extra_atoms = []; // To be handle d naively later

bin_loc = a.loc / BIN_SIZE; // Spatial hashing, radix sort
bin = bins[bin_loc]
if bin is not full,

bin.add(a);

extra_atoms.add(a);

neighbor_list = [];
(cut off radius) to +(cut off radius),

// NOTE: uncomment below to make it a bounding sphe re.
// if (distance from zero to offset <= cu t off radius) then
neighbor_list.add(offset);

Figure 3: Illustration of the Simulation Volume Extension

region to be used in cutoff
summation. The shape of neighborhood is precomputed with respect to the binning lattice in the form
of a list of neighbor offsets. As shown in Figure 3(a), the area within the cut off radius forms a sphere

e. In this lab, however, we assume that the shape of neighborhood is a bounding
cube that has the sphere inside as shown in Figure 3(b) and (c) to reduce the programming effort,

code computes the neighborhood list for a bounding cube.

This phase calculates the electrostatic potential map using the bins and neighbor list that are done
output grid and for each point neighboring bins are to

bins = [][BIN_CAPACITY]; // List of arra y
extra_atoms = []; // To be handle d naively later

bin_loc = a.loc / BIN_SIZE; // Spatial hashing, radix sort

(cut off radius) to +(cut off radius),
// NOTE: uncomment below to make it a bounding sphe re.

t off radius) then

Figure 3: Illustration of the Simulation Volume Extension

Lab 2B: Binning with Uniform Distribution

be identified and summed up. The atoms that did not fit into bins need to processed by the CPU using
the naive approach. The pseudo-code is shown as below.

6. Implementation

6.1. Review the Naive Implementation
The purpose of this step is to get you familiar with basic idea to solve the problem. In this step,
you don’t need to implement anything. Instead, you should be comfortable with the source codes
and some data structures that are provided. Please open
Function calc_energy() is the common interface to solve the problem. The name and
description of the function parameters are shown in Table 1.

Table 1: A Few Important Data Structures
Name Type

energygrid float* One dimensional array
grid.y * grid.z in linear address form.

grid voldim3i Dimension of output energy grid where cumulative potential is to be
summed up. Note that grid.z equals to 1 to make the output grid a single
plane.

typedef struct _tag {
int x, y, z;

} voldim3i;
atoms float* Atoms information as follows.

atoms[4 * n + 0] : x coordinate
atoms[4 * n + 1] : y coordinate
atoms[4 * n + 2] : z coordinate
atoms[4 * n + 3] : particle charge
(0 <= n

numatoms int Number of atoms in the simulation volume
gridspacing float Size of output grid lattice space

k int Z-axis of the output grid plane

// Part 1. compute with bins
For each outpu t grid point p,
// identify central bin from the location of p

center_bin = bins[p.loc / BIN_SIZE];
for n in neighbor_list,

 bin = bins[center_bin.pos + n.pos];
 for each atom in atoms in bin,
 dist = |p.loc
 p.energy += atom.q/dist*s(dis

// Part 2. Handle extra atoms
For each output grid point p,
 for each atom in extra_atoms,
 dist = |p.loc
 p.energy += atom.q / dist * s(dist)

23

be identified and summed up. The atoms that did not fit into bins need to processed by the CPU using
code is shown as below.

6.1. Review the Naive Implementation
step is to get you familiar with basic idea to solve the problem. In this step,

you don’t need to implement anything. Instead, you should be comfortable with the source codes
and some data structures that are provided. Please open benchmarks/cp/src/1/cener

is the common interface to solve the problem. The name and
description of the function parameters are shown in Table 1.

Table 1: A Few Important Data Structures

Description
One dimensional array to contain output points, which is as big as grid.x *
grid.y * grid.z in linear address form.
Dimension of output energy grid where cumulative potential is to be
summed up. Note that grid.z equals to 1 to make the output grid a single
plane. Voldim3i is defined as:

typedef struct _tag {
int x, y, z;

} voldim3i;
Atoms information as follows.
atoms[4 * n + 0] : x coordinate
atoms[4 * n + 1] : y coordinate
atoms[4 * n + 2] : z coordinate
atoms[4 * n + 3] : particle charge
(0 <= n < numatoms)
Number of atoms in the simulation volume
Size of output grid lattice space

axis of the output grid plane

// Part 1. compute with bins
t grid point p,

// identify central bin from the location of p
center_bin = bins[p.loc / BIN_SIZE];
for n in neighbor_list,

bin = bins[center_bin.pos + n.pos];
for each atom in atoms in bin,

dist = |p.loc – atom.loc|
p.energy += atom.q/dist*s(dis t //s(dist) by Eq. 2

// Part 2. Handle extra atoms
For each output grid point p,

for each atom in extra_atoms,
dist = |p.loc – atom.loc|
p.energy += atom.q / dist * s(dist)

be identified and summed up. The atoms that did not fit into bins need to processed by the CPU using

step is to get you familiar with basic idea to solve the problem. In this step,
you don’t need to implement anything. Instead, you should be comfortable with the source codes

benchmarks/cp/src/1/cenergy.c.
is the common interface to solve the problem. The name and

to contain output points, which is as big as grid.x *

Dimension of output energy grid where cumulative potential is to be
summed up. Note that grid.z equals to 1 to make the output grid a single

//s(dist) by Eq. 2

Lab 2B: Binning with Uniform Distribution

Fill in the execution time in the following instruction table.

Source code to work

How to build & run

Time to run (measure it!)

6.2 Binning

Throughout this step, you will implement the binning algorithm you have studied previously.
This step has three sub-steps each of which is related to a phase of the algorithm described in Section
5.2 (Binning Approach). The following code snippet is the body of

benchmarks/cp/src/2.1/cenergy.c

You will be asked to implement the functions called in
recommended to follow all the steps provided here because later steps might require the result of
previous steps.

6.2.1 Implement uniform bins and spatial hashing atoms onto them

You need to create bins of uniform grid
mentioned earlier, this stage corresponds to Phase 1 of the algorithm shown in Phase 1 of Section 5.2.
You need to fill Function create_uniform_bin()
”Step 2.1”. Once you do it correctly, it will print out

Source code to work

How to build & run

// Phase 1. Perform the binning process
 create_uniform_bin(grid, num_atoms, gridspacing, at oms, cutoff);

// Phase 2. Create the neighbor list
 sol_create_neighbor_list(gridspacing, cutoff);

// Phase 3. Calculate energy
//{
 sol_calc_energy_with_bins(
 energygrid, grid, atoms, num_atoms, gridspacing, cu toff, k);
 calc_extra(energygrid, grid, gridspacing, cutoff, k);
//}

24

Fill in the execution time in the following instruction table.

$PARBOIL_ROOT/benchmarks/cp/src/ 1

cd $PARBOIL_ROOT
./parboil run cp 1 uniform

Throughout this step, you will implement the binning algorithm you have studied previously.
steps each of which is related to a phase of the algorithm described in Section

5.2 (Binning Approach). The following code snippet is the body of calc_energy()

benchmarks/cp/src/2.1/cenergy.c that computes the result which reveals

You will be asked to implement the functions called in calc_energy()
recommended to follow all the steps provided here because later steps might require the result of

6.2.1 Implement uniform bins and spatial hashing atoms onto them

You need to create bins of uniform grid which divide the extended simulation volume. As
mentioned earlier, this stage corresponds to Phase 1 of the algorithm shown in Phase 1 of Section 5.2.

create_uniform_bin() accordingly. Open the source code and search for
. Once you do it correctly, it will print out “Pass”.

$PARBOIL_ROOT/benchmarks/cp/src/ 2.1

cd $PARBOIL_ROOT
./parboil run cp 2.1 uniform

// Phase 1. Perform the binning process
create_uniform_bin(grid, num_atoms, gridspacing, at oms, cutoff);

// Phase 2. Create the neighbor list
sol_create_neighbor_list(gridspacing, cutoff);

// Phase 3. Calculate energy using the bins and the neighbor list

sol_calc_energy_with_bins(
energygrid, grid, atoms, num_atoms, gridspacing, cu toff, k);
calc_extra(energygrid, grid, gridspacing, cutoff, k);

1/cenergy.c

Throughout this step, you will implement the binning algorithm you have studied previously.
steps each of which is related to a phase of the algorithm described in Section

calc_energy() function in

 all steps of the algorithm.

lc_energy(). Note that it is strongly
recommended to follow all the steps provided here because later steps might require the result of

which divide the extended simulation volume. As
mentioned earlier, this stage corresponds to Phase 1 of the algorithm shown in Phase 1 of Section 5.2.

accordingly. Open the source code and search for

2.1 /cenergy.c

create_uniform_bin(grid, num_atoms, gridspacing, at oms, cutoff);

using the bins and the neighbor list

energygrid, grid, atoms, num_atoms, gridspacing, cu toff, k);
calc_extra(energygrid, grid, gridspacing, cutoff, k);

Lab 2B: Binning with Uniform Distribution

6.2.2 Implement list of neighborhood bins

Next, you need to create list of neighboring bins for a given location in the simulation volume. In
this step, you need to fill Function
search for ”Step 2.2”. Similarly, once you do it correctly, it will print out
may skip the previous stage by calling
Function calc_energy().

Source code to work

How to build & run

6.2.3 Implement columbic potential kernel

With the bins and neighborhood list you have done so far, finally you can implement a kernel
which corresponds to Phase 3 of the algorithm. In this stage, you
calc_energy_with_bins() accordingly. Open the source code and search for
need to reuse what you have done in Steps 2.1 and 2.2. If you want to skip them and use the reference
implementation, use sol_create_uniform_b
calc_energy(). Write down the execution time when you succeed for later comparison with the GPU
version.

Source code to work

How to build & run

Time to run (measure it!)

6.3 Optimize the Performance on the GPU

6.3.1 Naive Approach

Now let’s move on to the GPU version. Among the three phases of the algorithm, the last one
seems a proper candidate for a GPU to handle. As such, we also focus on the last phase of the algorithm
in this step. Your mission is to implement a CUDA version of what you have done previously. Open the
source code and search for “Step 3.1”. The strategy is to map outp
let the threads for each grid visit all the atoms within the cutoff range. This should look very similar
what you have done in Step 2.3. Write down the execution time when you get the correct result. Again,
you may use the reference implementation for 2.1 and 2.2.

Hint: Try to allocate a thread block for an output grid point. Then let the threads in the block
contribute to the output. If you haven't finished 2.3 yet, you can start from 3.1
implements the idea of this step.

25

6.2.2 Implement list of neighborhood bins

Next, you need to create list of neighboring bins for a given location in the simulation volume. In
this step, you need to fill Function create_neighbor_list() accordingly. Open the source code and

. Similarly, once you do it correctly, it will print out
may skip the previous stage by calling sol_create_uniform_bin() instead of

$PARBOIL_ROOT/benchmarks/cp/src/ 2.2

cd $PARBOIL_ROOT
./parboil run cp 2.2 uniform

6.2.3 Implement columbic potential kernel

With the bins and neighborhood list you have done so far, finally you can implement a kernel
which corresponds to Phase 3 of the algorithm. In this stage, you
calc_energy_with_bins() accordingly. Open the source code and search for “Step 2.3”

need to reuse what you have done in Steps 2.1 and 2.2. If you want to skip them and use the reference
implementation, use sol_create_uniform_bin() and sol_create_neighbor_list() in Function
calc_energy(). Write down the execution time when you succeed for later comparison with the GPU

$PARBOIL_ROOT/benchmarks/cp/src/ 2.3

cd $PARBOIL_ROOT
./parboil run cp 2.3 uniform

6.3 Optimize the Performance on the GPU

Now let’s move on to the GPU version. Among the three phases of the algorithm, the last one
candidate for a GPU to handle. As such, we also focus on the last phase of the algorithm

in this step. Your mission is to implement a CUDA version of what you have done previously. Open the
source code and search for “Step 3.1”. The strategy is to map output grid points onto CUDA grids and
let the threads for each grid visit all the atoms within the cutoff range. This should look very similar
what you have done in Step 2.3. Write down the execution time when you get the correct result. Again,

e reference implementation for 2.1 and 2.2.

Try to allocate a thread block for an output grid point. Then let the threads in the block
If you haven't finished 2.3 yet, you can start from 3.1

f this step.

Next, you need to create list of neighboring bins for a given location in the simulation volume. In
accordingly. Open the source code and

. Similarly, once you do it correctly, it will print out “Pass”. Note that you
sol_create_uniform_bin() instead of create_uniform_bin() in

2.2 /cenergy.c

With the bins and neighborhood list you have done so far, finally you can implement a kernel
which corresponds to Phase 3 of the algorithm. In this stage, you need to implement

“Step 2.3”. You might
need to reuse what you have done in Steps 2.1 and 2.2. If you want to skip them and use the reference

in() and sol_create_neighbor_list() in Function
calc_energy(). Write down the execution time when you succeed for later comparison with the GPU

2.3 /cenergy.c

Now let’s move on to the GPU version. Among the three phases of the algorithm, the last one
candidate for a GPU to handle. As such, we also focus on the last phase of the algorithm

in this step. Your mission is to implement a CUDA version of what you have done previously. Open the
ut grid points onto CUDA grids and

let the threads for each grid visit all the atoms within the cutoff range. This should look very similar
what you have done in Step 2.3. Write down the execution time when you get the correct result. Again,

Try to allocate a thread block for an output grid point. Then let the threads in the block
If you haven't finished 2.3 yet, you can start from 3.1-help which

Lab 2B: Binning with Uniform Distribution

Source code to work

How to build & run

Time to run (measure it!)

6.3.2 Tiling Approach

Simply peeling the loop and mapping each loop index to a thread index or a block index should
work nicely; however, it can also be optimized further.
being loaded from the global memory will be used only once which wastes the memory bandwidth.
The goal of this step is to optimize the memory bandwidth.

Once you load a bin and the atoms in it, they can be used f
due to the coarse binning. Following is pseudo
able to configure the grid and the blocks for the CUDA kernel properly.

Hint: If you haven't finished 2.3 or 3.1 yet, y
the idea of this step. Following is the pseudo

Please refer to the instruction as below.

Source code to work

How to build & run

Time to run (measure it!)

Once it works, you can cache atoms in the shared memory. It will provide you with slightly better
performance.

7. Questions

1. Why does Step 3.2 have better potential than

For each output grid block b, // blocks, not points
 center_bin = bins[b.loc / BIN_SIZE];
 for n in neighbor_list,

 bin = bins[center_bin.pos + n
 for each atom in bin.atoms,
 for each point p in b, // iterate points in the b lock
 dist = | p.loc
 p.energy += atom.q / dist * s(dist)

26

$PARBOIL_ROOT/benchmarks/cp/src/ 3.1

cd $PARBOIL_ROOT
./parboil run cp 3.1 uniform

Simply peeling the loop and mapping each loop index to a thread index or a block index should
work nicely; however, it can also be optimized further. The observation from Step 3.1 is that atoms
being loaded from the global memory will be used only once which wastes the memory bandwidth.
The goal of this step is to optimize the memory bandwidth.

Once you load a bin and the atoms in it, they can be used for multiple output grid points nearby
due to the coarse binning. Following is pseudo-code for the modified implementation. You should be
able to configure the grid and the blocks for the CUDA kernel properly.

If you haven't finished 2.3 or 3.1 yet, you can start from 3.2
Following is the pseudo-code.

Please refer to the instruction as below.

$PARBOIL_ROOT/benchmarks/cp/src/ 3.2

cd $PARBOIL_ROOT
./parboil run cp 3.2 uniform

Once it works, you can cache atoms in the shared memory. It will provide you with slightly better

1. Why does Step 3.2 have better potential than Step 3.1 in terms of memory performance?

For each output grid block b, // blocks, not points
center_bin = bins[b.loc / BIN_SIZE];
for n in neighbor_list,
bin = bins[center_bin.pos + n .pos];
for each atom in bin.atoms,

for each point p in b, // iterate points in the b lock
dist = | p.loc – atom.loc |
p.energy += atom.q / dist * s(dist)

3.1 /cenergy.cu

Simply peeling the loop and mapping each loop index to a thread index or a block index should
The observation from Step 3.1 is that atoms

being loaded from the global memory will be used only once which wastes the memory bandwidth.

or multiple output grid points nearby
code for the modified implementation. You should be

ou can start from 3.2-help which implements

3.2 /cenergy.cu

Once it works, you can cache atoms in the shared memory. It will provide you with slightly better

Step 3.1 in terms of memory performance?

For each output grid block b, // blocks, not points

for each point p in b, // iterate points in the b lock

Lab 2B: Binning with Uniform Distribution

2. Can you point out data structures that leverage faster memory system such as context memory,
texture memory or shared memory? Explain and implement your answer. How much performance
improvement can you expect?

3. How does the performance change when we adjust the binning configuration? Specifically,
what happens when we change the capacity of the bin from 8 to 4? Why does that happen?

4. Try using non-uniformly distributed input data by changing input from uniform
non_uniform. What happens? What will you do to rectify this situation? What do you think are
problems with your solution?

27

2. Can you point out data structures that leverage faster memory system such as context memory,
texture memory or shared memory? Explain and implement your answer. How much performance

How does the performance change when we adjust the binning configuration? Specifically,
what happens when we change the capacity of the bin from 8 to 4? Why does that happen?

uniformly distributed input data by changing input from uniform
What happens? What will you do to rectify this situation? What do you think are

2. Can you point out data structures that leverage faster memory system such as context memory,
texture memory or shared memory? Explain and implement your answer. How much performance

How does the performance change when we adjust the binning configuration? Specifically,
what happens when we change the capacity of the bin from 8 to 4? Why does that happen?

uniformly distributed input data by changing input from uniform to
What happens? What will you do to rectify this situation? What do you think are

Lab 3: Binning with Non-Uniform Distributions

Lab 3: Binning with Non

Nasser Anssari (anssari1@illinois.edu),

1. Objectives

In Lab 2B (Binning with Uniform Distributions), you optimized the execution of the Columbic
Potential application using the binning technique and explored the benefits of spatially decomposing
the computation and data in a manner which naturally maps to
uses the memory system. Moreover, you took advantage of the uniform distribution of the input data to
hone your implementation. In this lab, you will look into another example of applications which uses
window functions (functions which are zero
reconstruction. In particular, you will analyze the impact of its non
performance of the algorithmic approach of Lab 2B and consider other alternati
better-suited for such distributions.

2. Lab Applications

Efficient computation of window functions is of particular importance due to their prominence in
molecular modeling applications in domains that span biochemistry, materials science
and astrophysics. Typically involving a large number of data points in multiple dimensions, such
applications require novel spatial data structures and search algorithms, such as binning, for efficient
data representation and querying.

3. Prerequisite Knowledge

1) Basic C Language and CUDA programming skills

2) Familiarity with major data structures and algorithms such as sorting and vector reduction

4. Theoretical Background

The MRI Reconstruction application, the example application of
samples from the k-space into the image space using IFFT. Since MRI scanners typically use spiral
trajectories in a cylindrical or spherical coordinate system (Figure 1), the image cannot be
reconstructed by directly applying I

Distributions

28

Lab 3: Binning with Non-Uniform Distributions

Nasser Anssari (anssari1@illinois.edu), Nady Obeid (obeid1@illinois.edu)

In Lab 2B (Binning with Uniform Distributions), you optimized the execution of the Columbic
Potential application using the binning technique and explored the benefits of spatially decomposing
the computation and data in a manner which naturally maps to CUDA thread blocks and efficiently
uses the memory system. Moreover, you took advantage of the uniform distribution of the input data to
hone your implementation. In this lab, you will look into another example of applications which uses

(functions which are zero-valued outside some chosen interval), namely MRI
reconstruction. In particular, you will analyze the impact of its non-uniform data distribution on the
performance of the algorithmic approach of Lab 2B and consider other alternati

suited for such distributions.

Efficient computation of window functions is of particular importance due to their prominence in
molecular modeling applications in domains that span biochemistry, materials science
and astrophysics. Typically involving a large number of data points in multiple dimensions, such
applications require novel spatial data structures and search algorithms, such as binning, for efficient
data representation and querying.

1) Basic C Language and CUDA programming skills

2) Familiarity with major data structures and algorithms such as sorting and vector reduction

4. Theoretical Background

The MRI Reconstruction application, the example application of this lab, transforms MR data
space into the image space using IFFT. Since MRI scanners typically use spiral

trajectories in a cylindrical or spherical coordinate system (Figure 1), the image cannot be
reconstructed by directly applying IFFF to the k-space samples.

Figure 1: Typical Data Acquisition
Paths in MRI Scanning

Uniform Distributions

Nady Obeid (obeid1@illinois.edu)

In Lab 2B (Binning with Uniform Distributions), you optimized the execution of the Columbic
Potential application using the binning technique and explored the benefits of spatially decomposing

CUDA thread blocks and efficiently
uses the memory system. Moreover, you took advantage of the uniform distribution of the input data to
hone your implementation. In this lab, you will look into another example of applications which uses

valued outside some chosen interval), namely MRI
uniform data distribution on the

performance of the algorithmic approach of Lab 2B and consider other alternatives which may be

Efficient computation of window functions is of particular importance due to their prominence in
molecular modeling applications in domains that span biochemistry, materials science, thermal science,
and astrophysics. Typically involving a large number of data points in multiple dimensions, such
applications require novel spatial data structures and search algorithms, such as binning, for efficient

2) Familiarity with major data structures and algorithms such as sorting and vector reduction

this lab, transforms MR data
space into the image space using IFFT. Since MRI scanners typically use spiral

trajectories in a cylindrical or spherical coordinate system (Figure 1), the image cannot be

Figure 1: Typical Data Acquisition
Paths in MRI Scanning

Lab 3: Binning with Non-Uniform Distributions

Instead, in a commonly used approach called gridding, the samples are first interpolated onto a
uniform Cartesian grid and then reconstructed using IFFT (Figure 2
gridding takes a k-space data point, convolves it with a gridding kernel, and accumulates the results on
a Cartesian grid. The gridding kernel uses Kaiser

The chief advantage of window funct
be outside the cutoff radius for a localized region of the output grid. Still, a distance test is needed to
check for the input points which satisfy this condition. To minimize the volume whose input

to be processed, input points can be spatially hashed into bins prior to output computation. A near
uniform distribution of input data, such as that of the Columbic Potential application of Lab 2B, allows
using a pre-allocated array of bins with equal capacities to optimize the implementation of the
algorithm. Such a data structure, however, is not suitable for non
which will become evident through the course of this lab. Th
implementation inefficient and thus motivates probing alternative approaches.

One example approach substitutes “implicit dynamic” bins for the “explicit static” ones. While
the output lattice is still decomposed into a se
the indices of these bins rather than distributed over a pre
the resulting implicit bins require a subsequent reduction step to determine the beginning
the sorted input array (Figure 3). To improve the load balance across the bins processed on the GPU, a
limit can be imposed on the bin capacity so that the superfluous data points from all bins are grouped
and offloaded to the CPU.

Distributions

29

Instead, in a commonly used approach called gridding, the samples are first interpolated onto a
uniform Cartesian grid and then reconstructed using IFFT (Figure 2). A convolution approach to

space data point, convolves it with a gridding kernel, and accumulates the results on
a Cartesian grid. The gridding kernel uses Kaiser-Bessel function, a window function.

The chief advantage of window functions comes from skipping input points which are known to
be outside the cutoff radius for a localized region of the output grid. Still, a distance test is needed to
check for the input points which satisfy this condition. To minimize the volume whose input

to be processed, input points can be spatially hashed into bins prior to output computation. A near
uniform distribution of input data, such as that of the Columbic Potential application of Lab 2B, allows

allocated array of bins with equal capacities to optimize the implementation of the
algorithm. Such a data structure, however, is not suitable for non-uniform data distributions for reasons
which will become evident through the course of this lab. This renders the previously tailored
implementation inefficient and thus motivates probing alternative approaches.

One example approach substitutes “implicit dynamic” bins for the “explicit static” ones. While
the output lattice is still decomposed into a set of predetermined bins, the input data is sorted based on
the indices of these bins rather than distributed over a pre-allocated array thereof. The varying sizes of
the resulting implicit bins require a subsequent reduction step to determine the beginning
the sorted input array (Figure 3). To improve the load balance across the bins processed on the GPU, a
limit can be imposed on the bin capacity so that the superfluous data points from all bins are grouped

Figure 2: MRI Reconstruction

Instead, in a commonly used approach called gridding, the samples are first interpolated onto a
). A convolution approach to

space data point, convolves it with a gridding kernel, and accumulates the results on
Bessel function, a window function.

ions comes from skipping input points which are known to
be outside the cutoff radius for a localized region of the output grid. Still, a distance test is needed to
check for the input points which satisfy this condition. To minimize the volume whose input data needs

to be processed, input points can be spatially hashed into bins prior to output computation. A near-
uniform distribution of input data, such as that of the Columbic Potential application of Lab 2B, allows

allocated array of bins with equal capacities to optimize the implementation of the
uniform data distributions for reasons

is renders the previously tailored
implementation inefficient and thus motivates probing alternative approaches.

One example approach substitutes “implicit dynamic” bins for the “explicit static” ones. While
t of predetermined bins, the input data is sorted based on

allocated array thereof. The varying sizes of
the resulting implicit bins require a subsequent reduction step to determine the beginning of each bin in
the sorted input array (Figure 3). To improve the load balance across the bins processed on the GPU, a
limit can be imposed on the bin capacity so that the superfluous data points from all bins are grouped

Lab 3: Binning with Non-Uniform Distributions

5. Implementation Details

This section details the implementation of the “sort
context of the MRI reconstruction application as provided in the ancillary lab
steps described below, except the last, corresponds to a separate GPU kernel.

1) Spatial Hashing and Partitioning

The implementation proceeds with determining the closest bin to every input sample while
maintaining this information in two interrelated arrays: one for the indices of the input samples, and the
other for the indices of the bins to which they are mapped. A third array is used to keep track of the
number of sample points mapped to each bin. If a bin reaches maximum capacity
sample points intended for it are mapped to an overflow list to be processed on the CPU. This list thus
serves as a single bin which spans the entire output grid.

2) Sorting

The bin indices array and the sample indices array from Step 1 ar
congregate the indices of the samples belonging to the same bin.

Figure 3: Sort

Distributions

30

This section details the implementation of the “sort-reduce” algorithmic variant of binning in the
context of the MRI reconstruction application as provided in the ancillary lab
steps described below, except the last, corresponds to a separate GPU kernel.

1) Spatial Hashing and Partitioning

The implementation proceeds with determining the closest bin to every input sample while
two interrelated arrays: one for the indices of the input samples, and the

other for the indices of the bins to which they are mapped. A third array is used to keep track of the
number of sample points mapped to each bin. If a bin reaches maximum capacity
sample points intended for it are mapped to an overflow list to be processed on the CPU. This list thus
serves as a single bin which spans the entire output grid.

The bin indices array and the sample indices array from Step 1 are sorted as a key
congregate the indices of the samples belonging to the same bin.

Figure 3: Sort-Reduce Variant of Binning

reduce” algorithmic variant of binning in the
context of the MRI reconstruction application as provided in the ancillary lab material. Each of the

The implementation proceeds with determining the closest bin to every input sample while
two interrelated arrays: one for the indices of the input samples, and the

other for the indices of the bins to which they are mapped. A third array is used to keep track of the
number of sample points mapped to each bin. If a bin reaches maximum capacity, any additional
sample points intended for it are mapped to an overflow list to be processed on the CPU. This list thus

e sorted as a key-value pair to

Lab 3: Binning with Non-Uniform Distributions

3) Reordering

Using the sorted key-value arrays from Step 2, the sample points in the original input array are
shuffled to form implicit bins. Sorting and reor
kernel only accepts values of the Integer data type.

4) Scanning

The implicit bins from Step 3 have variable capacities and thus their starting locations are
unknown. A reduction operation is performed o
in each bin and determine its starting location.

5) Gridding

A Kaiser-Bessel function is used to construct the output grid from the binned input (Figure 4).
The CPU and the GPU process their respect
the full computational power of the system besides utilizing the CPU to improve the load balance on
the GPU.

6) Merging

The partial results from the CPU and the GPU from Step 5 are merged into the final output grid.

6. Procedure

1) You will start with investigating the limitations of the binning approach of Lab 2B with non
uniformly distributed data. To this end, you are provided with an implementa
Reconstruction application which uses this approach. The implementation is fully functional, so you
only need to familiarize yourself with the source code (Figure 5). You are given a default input set of
30144488 samples which the applicati

Figure 4: Pseudo

Distributions

31

value arrays from Step 2, the sample points in the original input array are
shuffled to form implicit bins. Sorting and reordering are broken into two steps because the sorting
kernel only accepts values of the Integer data type.

The implicit bins from Step 3 have variable capacities and thus their starting locations are
tion is performed on the array of bin indices to tally the number of samples

in each bin and determine its starting location.

Bessel function is used to construct the output grid from the binned input (Figure 4).
The CPU and the GPU process their respective portions of the input concurrently, thereby exploiting
the full computational power of the system besides utilizing the CPU to improve the load balance on

the CPU and the GPU from Step 5 are merged into the final output grid.

1) You will start with investigating the limitations of the binning approach of Lab 2B with non
uniformly distributed data. To this end, you are provided with an implementa
Reconstruction application which uses this approach. The implementation is fully functional, so you
only need to familiarize yourself with the source code (Figure 5). You are given a default input set of

which the application maps onto a 128x128x128 Cartesian grid

Figure 4: Pseudo-code of the Gridding Step

value arrays from Step 2, the sample points in the original input array are
dering are broken into two steps because the sorting

The implicit bins from Step 3 have variable capacities and thus their starting locations are
n the array of bin indices to tally the number of samples

Bessel function is used to construct the output grid from the binned input (Figure 4).
ive portions of the input concurrently, thereby exploiting

the full computational power of the system besides utilizing the CPU to improve the load balance on

the CPU and the GPU from Step 5 are merged into the final output grid.

1) You will start with investigating the limitations of the binning approach of Lab 2B with non-
uniformly distributed data. To this end, you are provided with an implementation of the MRI
Reconstruction application which uses this approach. The implementation is fully functional, so you
only need to familiarize yourself with the source code (Figure 5). You are given a default input set of

128x128x128 Cartesian grid.

Lab 3: Binning with Non-Uniform Distributions

Run the application (Table 1) using different bin capacities and standard deviations and record the
corresponding execution information (Table 2). The paramete
specifies the bin capacity (first value in the field) and the standard deviation (second value).

Source Code Path

Input Description File Path

Compilation and Execution Command

Distributions

32

Run the application (Table 1) using different bin capacities and standard deviations and record the
corresponding execution information (Table 2). The parameters field in the input description file
specifies the bin capacity (first value in the field) and the standard deviation (second value).

Table 1

$PARBOIL_ROOT/benchmarks/3/src/3.1

Input Description File Path
$PARBOIL_ROOT/benchmarks/3/input/default/
DESCRIPTION

Compilation and Execution Command
#cd PARBOIL_ROOT
#./parboil run 3 3.1 default

Figure 5: File Hierarchy of Lab 3.1

Run the application (Table 1) using different bin capacities and standard deviations and record the
rs field in the input description file

specifies the bin capacity (first value in the field) and the standard deviation (second value).

$PARBOIL_ROOT/benchmarks/3/src/3.1

$PARBOIL_ROOT/benchmarks/3/input/default/

#./parboil run 3 3.1 default

Lab 3: Binning with Non-Uniform Distributions

Bin Capacity

16

% of Samples Processed on CPU

% of Wasted Bin

Binning Time

GPU Computing Time

Total Execution Time

48

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

80

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

112

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

Did you identify any patterns for the changes in the measured quantities? Can you explain such
patterns? Keep in mind that larger standard deviations mean more uniformly

2) Next, you will explore the advantages of
As a starting point, you are given a skeleton implementation (Figure 6) comprising five GPU kernels
which correspond to the first five steps outlined in Section 5.

Distributions

33

Table 2

Bin Capacity
Standard Deviation

16 32 48

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Execution Time

Did you identify any patterns for the changes in the measured quantities? Can you explain such
patterns? Keep in mind that larger standard deviations mean more uniformly-distributed data.

2) Next, you will explore the advantages of the binning algorithmic variant described in this lab.
As a starting point, you are given a skeleton implementation (Figure 6) comprising five GPU kernels
which correspond to the first five steps outlined in Section 5.

Standard Deviation

64 80

Did you identify any patterns for the changes in the measured quantities? Can you explain such
distributed data.

the binning algorithmic variant described in this lab.
As a starting point, you are given a skeleton implementation (Figure 6) comprising five GPU kernels

Lab 3: Binning with Non-Uniform Distributions

Complete the GPU kernels (Table 3) corresponding to
and Step 3 (reordering) described in Section 5. The kernels corresponding to Step 2 (sorting), Step 4
(scanning), and Step 5 (gridding) have been already done
a bin capacity of 80 and standard deviation of 16

Source Code Path

Source File to Modify

Input Description File Path

Compilation and Execution
Command

Once again, run the application using different bin capacities and standard deviations and record
the corresponding execution information (Table 4).

Distributions

34

Complete the GPU kernels (Table 3) corresponding to Step 1 (spatial hashing and partitioning)
described in Section 5. The kernels corresponding to Step 2 (sorting), Step 4

(scanning), and Step 5 (gridding) have been already done for you. The correctness of your solution for
standard deviation of 16 will be confirmed with a “Pass”

Table 3

 $PARBOIL_ROOT/benchmarks/3/src/3.2

Source File to Modify GPU_kernels.cu

File Path
$PARBOIL_ROOT/benchmarks/3/input/default/
DESCRIPTION

Compilation and Execution #cd PARBOIL_ROOT
#./parboil run 3 3.2 default

Once again, run the application using different bin capacities and standard deviations and record
corresponding execution information (Table 4).

Figure 6: File Hierarchy of Lab 3.2

Step 1 (spatial hashing and partitioning)
described in Section 5. The kernels corresponding to Step 2 (sorting), Step 4

for you. The correctness of your solution for
“Pass” message.

$PARBOIL_ROOT/benchmarks/3/src/3.2

$PARBOIL_ROOT/benchmarks/3/input/default/

#./parboil run 3 3.2 default

Once again, run the application using different bin capacities and standard deviations and record

Lab 3: Binning with Non-Uniform Distributions

Bin Capacity

80

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

112

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

144

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing

Total Execution Time

176

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

How do the results compare to those of Lab 3.1? Did you notice that
can be used?

7. Questions

1) What are the limitations of the binning approach of Lab 2B when used with non
distributions? How does the algorithmic variant presented in this lab circumvent these limitations?

Distributions

35

Table 4

Bin Capacity
Standard Deviation

16 32 48

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

% of Samples Processed on CPU

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

How do the results compare to those of Lab 3.1? Did you notice that bins with larger capacities

1) What are the limitations of the binning approach of Lab 2B when used with non
distributions? How does the algorithmic variant presented in this lab circumvent these limitations?

Standard Deviation

64 80

bins with larger capacities

1) What are the limitations of the binning approach of Lab 2B when used with non-uniform data
distributions? How does the algorithmic variant presented in this lab circumvent these limitations?

Lab 3: Binning with Non-Uniform Distributions

2) In this lab, the MRI Reconstruction application is parallelized by dividing the output points
across the parallel threads of execution. Conversely, the application can be parallelized by dividing the
input samples across the threads. Since a single input sample
vicinity, however, atomic operations are required for correct execution in this case. While atomic
operations typically induce performance penalties, such a parallelism structure still proves to be more
efficient for certain data distributions. Do you expect this observation to materialize towards the
uniform or the non-uniform end of the data distribution? Try to validate your conclusion by
implementing this parallelism structure and running the resultant kernels.

Distributions

36

is lab, the MRI Reconstruction application is parallelized by dividing the output points
across the parallel threads of execution. Conversely, the application can be parallelized by dividing the
input samples across the threads. Since a single input sample affects multiple output points in its
vicinity, however, atomic operations are required for correct execution in this case. While atomic
operations typically induce performance penalties, such a parallelism structure still proves to be more

certain data distributions. Do you expect this observation to materialize towards the
uniform end of the data distribution? Try to validate your conclusion by

implementing this parallelism structure and running the resultant kernels.

is lab, the MRI Reconstruction application is parallelized by dividing the output points
across the parallel threads of execution. Conversely, the application can be parallelized by dividing the

affects multiple output points in its
vicinity, however, atomic operations are required for correct execution in this case. While atomic
operations typically induce performance penalties, such a parallelism structure still proves to be more

certain data distributions. Do you expect this observation to materialize towards the
uniform end of the data distribution? Try to validate your conclusion by

