I VSC Se VIRTUAL SCHOOL OF COMPUTATIONAL
SCIENCE AND ENGINEERING

VSCSE Summer School 201(

Proven Algorithmic Technigues for Many-core
Processors

Hands-on Labs

Nasser Anssari
Li-Wen Chang
Hee-Seok Kim
Deepthi Nandakumar
Nady Obeid
Christopher Rodriguez
John Stratton
I-Jui Sung
Xiao-Long Wu

The FMPBAET Research Group

Coordinated Science Laborat
Department of Electrical and Computer Enginee
University of lllinois at Urban-Champaign

The purpose of the hands-on labs is to assist dimeoshort course that teaches proven
algorithmic techniques for many-core processorss Tianual includes an introductory lab, followed
by several well-known problems like 7-point stencibmputation, Lattice-Boltzmann method,
Columbic potential calculation, and MRI reconstioict

In order to cater to students with different levefsunderstanding of CUDA programming, we
provide 4 hands-on labs, each of which reinforcee @r several algorithmic techniques and
performance optimizations. Most labs are designil levels of different difficulties. Due to limite
time in a hands-on lab section, we suggest that gfmose the difficulty level that best fits your
programming skills. If you have time, you can tadte another level. Here is the table of contents of

this manual.

Lab 0: Package Download and Environment Setup. ..o 3
Lab 1: 2-D blocking and Register TiliNgooceoeiiiiiiiiiiiiieiiieie et eee e e e 7
Lab 2A: Data Layout Transformation ... 14
Lab 2B: Binning with Uniform DiStriDULIONS....cce.iiiiiiiiiiiiiieieeeeeeeeeeeeeteeeeee e 19
Lab 3: Binning with Non-Uniform DiStriDULIONS ...c.....cooiiiiiiiiiiiiiiieeeeeeeeee e 2
8

If you have questions during the lab sections,g#eaise your hand or post your questions on the
discussion boards. The TAs will assist you as sa®they can.

Please do not distribute this manual without consent. For questions about this manual or its content
please contact the Impact research group at the University of Illinois at Urbana-Champaign.

ILLINOIS

Lab 0: Package Download and Environment £ UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Lab O0: Package Download and Environment SettL

Xiao-Long WU (xiaolong@illinois.edu)
1. Objective

The purpose of this lals ito check your environment settings and to make gou can compil
and run CUDA programs on the NCSA AC cluster. Thctives of this lab are summarized bel

» Todownload the assignment package, unpack it and thedkigh the directory structu
» Set up the environment for executing the assignn:

2. Preliminary work

Step 1 Use anSSH prograrr to login toac.ncsa.uiuc.eduusing the training account login a
initial password given to yowour home directory can be organized in way you like. To unpack
the SDK framework including the code for all of tlad assignments, execute the unpack comma
the directory you would like the SDK to be deplo:

$>tar — zxf ~xiaolong/CUDA WORKSHOP_UIUC1008.tgz

Step 2 Go to the lab0 directory and masure it exists and is populat
$>cd CUDA_WORKSHOP_UIUC1008/benchmarks/deviceQuer ylsrc/cuda

There should be at least two fil
1 deviceQuery.cu
[] Makefile

Note: If you are a remote user, we recommend you use anlP program with the SFTP
protocol and your account/password to retrieve the source filesmac.ncsa.uiuc.edu for editing
because the network may be unstable and disconnedtduring lab sections

Lab 0: Package Download and Environment £

3. Make the first CUDA program and execute it on tle AC clustel

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

The execution steps of this lab listed below. You shall use the commands listeck herthe

remaining labs in the manual.

Step 1 Set environment variable'You have to do this step whenever you start a ne

terminal window.

$>cd CUDA_WORKSHOP_UIUC1008/
$> source env.sh
Parboil librar y path is set: /home/ac/xiaolong/CUDA_WORKSHOP_UIUC

Step 2 Compile the lab.
$> ./parboil compile deviceQuery cuda

Step 3 Execute the lab.
$> ./parboil run deviceQuery cuda default

You shall see the following messe

PARBOIL_ROOT=/home/ac/xiaclong/CUDA_WORKSHOP_UIUC10 08 make -C
/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/com mon/src

make[1]: Entering directory
‘/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/common/sr c'

make[1]: Nothing to be done for "all'.

make[1]: Leaving directory
“lhome/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/commaon/sr c'

1008

nvcc - L/home/ac/xiaclong/CUDA_WORKSHOP_UIUC100 8/common/lib -Im -Ipthread -

Icuda -L/lib - L/usr/local/cuda/lib -
L/home/ac/xiaolong/CUDA_WORKSHOP_UIUC1008/common/li b
build/cuda_default/deviceQuery.o - 0 build/cuda_default/deviceQuery
Iparboil_cuda - Icuda -Iparboil

There is 1 device supporting CUDA

Device 0: "Tesla T10 Processor"

Major revision number: 1
Minor revision number: 3
Total amount of global memory: 4294 770688 bytes
Number of multiprocessors: 30

Numbe r of cores: 240
Total amount of constant memory: 6553 6 bytes
Total amount of shared memory per block: 1638 4 bytes
Total number of registers available per block: 1638 4
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 6553 5x 65535 x 1
Maximum memory pitch: 2147483647 bytes
Texture alignment: 256 bytes

ILLINOIS

Lab 0: Package Download and Environment £ UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Clock rate: 1.30 GHz
Concurrent copy and execution: Yes

Test PASSED
Parboil parallel benchmark suite, version 0.1

4. Underganding the Parboil framework

In the hand®n labs for the ManyCore Processors course, we dsemework called Parboil -
organize the labs. This is different from the labamization framework used in the Ir-to-CUDA
handsen labs. The Parboil fram¢rk is developed by the IMPACT Research group atUhiversity
of lllinois, and is meant to provide an easier rfstee to manipulate benchmarks and mea
performance on a GPU platform.

All lab assignments shall be compiled and run by parboil scrip under the unzipped lab
package directory, as listed in the previous sastidhe parboil script is designed to submit jabthe
AC cluster in a batch mode fashi

The unzipped lab package is composed of the follgwidirectory structures. For simpty, here
only lists the information you may need to kn

File “env.sh”: This is the environment setting |

File “parboil”: This is the main script to compiéad run the lab

Directory “benchmarks/”: This directory stores thbs
Subdirectory listcp/ deviceQuery/ Ibm/ mri/ sten:
Each lab is composed of the directories, “buildiput”, “output”, “src”, and “tools”. Directon
“build” stores the executables of each lab. Dirgctnput” stores the problem parameters and ir
data sets. Dirory “output” stores the problem output data seid golden results for comparis:
Directory “src” stores the source files of the gdewb of different versions or phases. Directory 3¢
stores the tools to assist the lab result compa

Directory“common/”: This directory contains libraries shatgdall labs
Subdirectory “src/”: This directory contains theimparboil library source file. If you plan to pahe
lab package to another environment, you shouldilcbthe parboil library at thislace.

Directory “driver/”: Here lists the related tools manipulate the compilation and executiol

the labs.

The output log of each lab execution shall list éiecution time taken for each of the followi
sections, 10, GPU, Copy, and Compute. Timeanings are listed below.
IO Time spent in input/outpt
GPU: Time spent computing on the G, recorded asynchronously.

Copy: Time spensynchronoushmoving data to/from GPU and allocating/freeing meyman the
GPU.

ILLINOIS

Lab 0: Package Download and Environment £ UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Driver: Time spent in the host interacting with driver, primarily for recording the timspent
gueueing asynchronous operati

Copy_Async Time spent in asynchronous trans

Compute: Time for all program execution on the host CPU pthan parsincommand line
arguments, I/O, GPU, and co

CPU/GPU Overlap: Time doubl-counted in asynchronous and hoshdtgt automatically filled in
not intended for direct usa.

ILLINOIS

Lab 1: 2-D blocking and Register Tiling

Lab 1: 2-D blocking and Register Tiling

Li-Wen Chang (Ichang20@illinois.edu), Deepthi Nandakumar (nandaku2@illinois.edu)

1. Objective

The purpose of this lab is to provide a real agpion environment tiexplore the performance
effects of 2D blocking with data reuse and register tiling sfanmations. This lab introduces th-
point stencil probe application, a mi-benchmark and tested for large stencil grid applicatio

This lab will draw on thedcture material ¢

Increasing locality in dense arrays (with a focadibng).
Improving efficiency and vectorization in denseagg

The source file directory for lab 1.1 contains twgiions for student

Difficulty Level 1: Students who are expenced in parallel program optimization and hay
good understanding of the lecture material shobtwbse this section. Students choosing Lak
will need to implement Optimizations 1, 2 and 3aded in Section 3 below in the fi
kernelsl.1l.cu

Difficulty Level 2: Students who are not very experienced in parpitejramming and/or are n
very familiar with the lecture material should ckedhis section. Students choosing Lab 1.2
need to implement only Optimizations 2 and 3 dethih Section below in the file
kernelsl.2.cu

2. Examine and Understand the 7 pt. Stencil Kern

The parboil benchmark 'stencil' contains the dathsource code, which should compile and
correctly with the parboil interface as it is. Madhat the output compson step will take sever
seconds.

$./parboil run stencil cuda default

All source code for the lab can be found in thedbemarks/stencil/src/cuda subdirectory of
provided lab package. The-pf stencil probe application is an example of n&aneeghbor
computations on an inputi3-array. Every element of the output array is dbescras a weighted line
combination of itself and 6 neighboring values fagvn in Fig.1

1], k+1

i,k i+1,j,K
| .]

ij-1k i _ .
Fig 1: 7-point Stencil

ik lllustration

_ _ . m ILLINOIS
Lab 1: 2-D blocking and Register Tiling UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

The main function in the file main.cu contains the major components of kernel setup
execution including global memory allocation, inplata copied to global memory, kernel launch
output data copied back into host memory. The imjath is generated in the generdata function in
file main.cu.

The naive kerneblock2D_naive is provided for reference ikernels.ct, and is invoked to
compute the output grid as a weighted combinatibrelements of the input grid. The keri
configuration parameters and launch aiown in themain.cu file in themain function.

dim3 block (tx, ty, 1);
dim3 grid ((nx+tx- D/tx, (ny+ty -1ty 1);
block2D_naive<<<grid, block>>>(fac,d_A0,d_Anext,nx, ny,nz,tx,ty,1);

Note that each thread block processBLOCK_SIZE_X byBLOCK_SIZE_Y block, within a
for-loop that iterates in the direction. In the given kernéblock2D_naive, each thread computes a
single output point, by a weighted combination ofjlébal memory elements that from the nea
neighbors.

To simplify boundary conditions, ttouter boundary of eachyplane (topmost and bottommc
rows, and leftmost and rightmost columns) is ihized to zeros, and the thread blocks proces:
elements within this boundary. Thus, the threachkdahat form the outer boundary of th-y plane
have a fraction of threads that are i

3. Modifying the Kernel

Difficulty Levels

This lab is organized into two difficulty levelshieh students can choose from, depending
their experience in parallel program optimizatiow/@r their confidenc and understanding of the |
material. The students will be required to impletde required optimizations in a manner that
exploits the performance potential of the applmatiThe functions for Optimizations 1, 2, ant
(detailed below) are demnled asblock2D_opt_1, block2D_opt_2 and block2D_opt_? in the file
kernels.cu

Lab 1.1: Students choosing this lab will need to implemepti@izations 1, 2, and 3 in the fi
kernelsl.1.cu The naive kerneblock2D _naive(explained in Section 2) is pr«ded for
reference. Make sure that the kernelsl.1.cuis included in thenain.cufile.

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Lab 1: 2-D blocking and Register Tiling

Lab 1.2: Students choosing this lab will be provided with Kernelsblock2D_naive and
block2D_sharedfor reference. The students will need to implenaery Optimizations 2 and 3
detailed below in the filkernels1.2.c. Make sure that the filkernels1.2.cuis included in the
main.cufile.

Optimization 1: Analyze the given kernel in detail. Every threadds 7 global memor
elements, thus meaning that even neiging threads that share data points load the sanmd
repetitively. Thus, this indicates good potentiaf performance improvement from data ret
Provided below is a rough outline of the logic&pst needed to arrive at an optimized kernel. N
multiple lines of code may be necessary to impldreanh of these logical ste

Stepl:Declare a shared memory structure to be used farsitearing. Determine the appropri
size from your analysis of the proble

Step 2: For each frame along th-axis, threads should load data points in collabeeatashior
into the shared memory structure. Ensure that sgnétation is effectively used to ensure ¢
consistency.

Step 3:For each frame along th-axis, compute the weighted combination of nearesghior
elements for the output poi

/Pseudo Code: Load elements into shared memory
for(each frame along z -axis){
if(indices within range)
shared_mem][index1] = data[index2];
syncthreads();

if(indices within range)
output[index] = Weighted combination of neighboring
elements;
syncthreads();

Fig 3: Pseudo Code for Optimization 1, Step 2 anct&p

Step 4: Change the kernel launch commands within the maimctfon to invoke kerne
block2D_opt_1

Step 5: Once you get a working imementation of the above methodology, experimenk
different combinations to find the best performgajution.

Table 1

Before Optimization 1 | After Optimization 1 Speedup

GPU Time

Lab 1: 2-D blocking and Register Tiling m }NWEIRZW{:LU}O@L\gwgm%wg
Optimization 2: Analyze the kernel you are working withdetail. Note that for eact-frame Kk,

you load the (k-1), k, and (k+'1frame (alternatively called the bottom, current amgl frames). Thi.

means that for the next frame, only the (" frame needs to be loaded from global memory, ak’

and (k+1Y' frame were already fetched in the previous iteratRrovided below is a rough outline

the logical steps needed to arrive at an optimizgexchel. Note that multiple lines of code may

necessary to implement each of these logical sNote that the kernel block2D_opt_1 (defined in

kernels.cu) is provided as additional reference, fahose students choosing Lab 1.

Step 1 Determine the appropriate size of the declaredeshmemory structui

Step 2:Insert a prologue that loads the very first 2 resplit-frame values from global memo
into registers/shared memory respectively. Thte imake sure that the first iteration of the in
loop has all the requiredfeames. You may also decide to store all framesoftom anc

//Declaring shared memory structures to hold 3 fram es
| shared current;
float bottom, top;

//Prologue
if(indices within range){

bottom = data[index]; //Corresponding data from Fra me 0
/IThreads load collaboratively into shared memory

current frame = {Load frame 1},
__syncthreads();

Fig 4: PseudcCode for Optimization 2, Step 1 and Step

current) in shared memory in which case, your aeitldook different from the example pset-
codes shown.

Step 3:Within the inner fc-loop that iterates over the frames on thexis, load the next require
value from the top frame into a register before potation. After computation, for the ne
iteration, the current frame becomes the bottom ane the top frame becomes the cur
frame. Thus, note that within eachration of the fotoop, only the required top frame need:
be loaded from global memao

10

ILLINOIS

Lab 1: 2-D blocking and Register Tiling UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

for(each frame along z -axis){

if(indices within range)

top = datafindex]; //Load next frame data from glob al mem
syncthreads();
if(indices within range)

output[index] = Weighted combination of

neighboring elements;

syncthreads();

bottom = Current[index];

/[Threads copy data collaboratively into shared mem ory
current frame = {Copy data from top};

Fig 5: Pseudo Code for Optimization 2, Ste3

Step 4:Change the kernel launch commands withinmain function to invoke kerne
block2D_opt_2

Table 2

Before Optimization 2 | After Optimization 2 Speedup

GPU Time

Optimization 3: In the kernel that you are working with, note teath threa computes exactly
one output point. By having each thread computetiptel points, we would be implementing t
register tiling optimization detailed in the leaurin this optimization, the student will modifyet
kernel to compute 2 output points ind of 1.

Step 1:Make sure that the sizes of the declared sharedonyegiements are large enougt
hold input data for 2 output poir

Step 2:Modify the loads from global memory to shared meyrtorload the additional da
points required for computiroutput point 2. If required, you may also need tdify the
prologue and the frame update for the next iteme

11

Lab 1: 2-D blocking and Register Tiling

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

/Declaring shared memory structures to hold 3 fram
points

| _shared current_combined;
float topl, top2, bottom1, bottom2;

/Prologue
if(indices within range){
Bottom1 = data[index1];//Load Frame O for output po
bottom2 = data[index2];//Load Frame O for output po

/[Threads load collaboratively into shared memory
Current_combined = {Load frame 1 for o/p points

Fig 6: Pseudo Code for Optimization 3, Step 1 anc

es for 2 //output

int 1
int 2

1 and 2};

Step 3:Add additional computation steps to load the t@pnies corresponding to the 2 out

points compute the 2nd output pc

Step 4:Change the kernel launch commands within the maiotfon to invoke kerne
block2D_opt_3,and also make necessary changerequired) to the kernel configuratis

parameters, such aock, grid etc.

for(each frame along z -axis){

if(indices within ran ge)
topl = datafindex1]; //Load data from next frame fo

top2 = datafindex2]; //Load data from next frame fo

syncthreads();

if(indices within range){
output[index1] = Weighted combination of index1
neighboring elements;

if(indices within range){
output[index2] = Weighted combination of index2
neighboring elements;

}

syncthreads();

bottom1 = Current[index1];
bottom2 = Current[index2];

/[Threads copy data collaboratively from topl and
Current_combined = {Copy data from topl and top2 co

Fig 7: Pseudo Code for Optimization 3, Step

r o/p point 1

r o/p point 2

top2
llaboratively};

ILLINOIS

Lab 1: 2-D blocking and Register Tiling UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Table 3

Before Optimization 3 | After Optimization 3s Speedup

GPU Time

4. Questions

Of all the configurations you tested, which onedqgrened best’A few questions thecould get
you to analyze the performance better are: Whétdsoptimal size of the shared memory struct
Which are the nearest neighbor elements that hdaighadegree of sharing with neighboring three
How can global memory loads be performed s to make best use of the underlying men
infrastructure? (Hint: coalesced accessFor Optimization 1, what patterns of the global roeyr
loads performed best. Why? Can you think of othayswvto load data into a-D shared memory
structure that coul@jive better performance? For Optimization 3, how yiou choose the 2 outg
points that a single thread computes? Are thererotibmbinations that you could have cho:

13

ILLINOIS

Lab 2A: Data Layout Transformation UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Lab 2A: Data Layout Transformation

John Sratton (stratton@crhc.uiuc.edu), I-Jui Sung (sungl0@illinois.edu)

1. Objective

The purpose of this lab is to provide a real agpic environment (Latti-Botlzmann Method)
to explore the performance effects of changinddlgeut of a multidimensional array of mi-element
data structures atts performance of GPU code accessing that afifaig lab will draw on the lectul
material on data layout, coalescing, and warp sdiregl

2. Examine and Understand the LBM Kerne

The parboil benchmark 'lbm' contains the data andce code, whiclshould compile and run
correctly with the parboil interface as it is. Rahat the output comparison step will take se\
seconds.

$> ./parboil run Iom cuda short

Parboil parallel benchmark suite, version 0.2

LBM_allocateGrid: allocated 130.9 MByte

MAIN_ printinfo:
grid size : 100 x 100 x 130 = 1.30 * 10”6 Cell s
nTimeSteps : 100
result file : run/short/reference.dat

action : store
simulation type: lid -driven cavity
obstacle file :in put/short/100_100 130_lIdc.of

LBM_allocateGrid: allocated 130.9 MByte

LBM_allocateGrid: allocated 130.9 MByte

LBM_showGridStatistics:
nObstacleCells: 112539 nAccelCells: 18432 nFluid Cells: 1169029
minRho: 1.0000 maxRho: 1.0000 mass: 1.300000e+06
minU: 0.000000e+00 maxU: 0.000000e+00

timestep: 64

LBM_allocateGrid: allocated 130.9 MByte

LBM_showGridStatistics:
nObstacleCells: 112539 nAccelCells: 18432 nFluid Cells: 1169029
minRho: 0.9344 maxRho: 1.0662 mass: 1.2 99998e+06
minU: 3.789891e -08 maxU: 2.634398e-02

10: 0.025683

GPU: 1.399837

Copy: 1.117329

Driver: 0.000507

Compute: 0.976847
CPU/GPU Overlap: 0.110463
Pass

14

ILLINOIS

Lab 2A: Data Layout Transformation UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

All source code for the lab can be found in thedbemarks/Ibm/src/cuda subdirectory of
provided lab package. The LBlapplication of this lab assignment simulates aedopdic-driven
cavity system. Aside from initialization and firedtion, the entire simulation is performed in thep
in the 'main’ function in the file main.(

for(t=1; t <= param.nTimeSteps; t++) {
pb_SwitchToTimer(&timers, pb_TimerlD_GPU);
CUDA_LBM_performStreamCollide(*CUDA_srcGrid, *CUDA _dstGrid);
}

The kernel in Ibm_kernels.cu will be invoked to adee the simulation forward one timest:
The kernel configuration parames and launch are shown in the lbm.cu file in
CUDA_LBM_performStreamCollide function from line3 & 44.

void CUDA _LBM_performStreamCollide(LBM_Grid srcGri d, LBM_Grid dstGrid) {
dim3 dimBlock, dimGrid;
dimBlock.x = SIZE_X;
dimGrid.x = SIZE_Y;
dimGrid.y = SIZE_Z;
dimBlock.y = dimBlock.z = dimGrid.z = 1;
performStreamCollide_kernel<<<dimGrid, dimBlock>>>(srcGrid,
dstGrid);
}

Examining the kernel in Ibm_kernels.cu, observe tha kernel initially coges all fields of one
cell from global memory to private variables, cotgsusome output based on those private varia
and then writes output to global memory. For this the computation is not particularly importém
focus on.

The LBM simulation grid is a regular lattice division of physicabse, where each cell conta
19 floatingpoint values recording the fluid flow in the 1-D adjacent and diagonal directions (No
South, East, West, Top, Bottom, and every compaphir in that se, plus a fluid density value for tt
cell overall (“Center” or “C”, to keep naming comt®n). Finally, each cell contains a word of 8
for determining whether the cell is an obstacleidflor driving cell. For the purposes of this lalt,
you needo understand is that the data structure for acogitains 20 values referenced by- or two-
character names.

The macros SWEEPX, SWEEPY and SWEEPZ name theblesialefining the X, Y and
coordinate of a cell. The macros SRC_* and DSTsé thos variables to compute an index for wh
that cell should find its input and output valueséach named fiel

15

ILLINOIS

Lab 2A: Data Layout Transformation UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

3. Changing the Data Layou

a) Gather vs. Scatter

Description: Each thread index must read in inputs from all ineaying cells in theprevious
time step, and write an output to all neighboriefjscfor the next time step. In the “gather” metf
the data structure for a particular cell holdstladl values that cell computed in the previous tatep.
Therefore, every thread must “her” its own inputs from fields in its neighboricglls. The “scatter
method instead stores in each cell the valuegsali@ighboring cells computed for it on the lastet
step. Therefore the input data for a cell in theent time step is all whin its own fields, but it mus
write its output into its neighboring cell's field

The code has been designed such that only the ogmesgsor definition in line 33 «
layout_config.h need be changed to choose betwatheigand scatt

#if 1

#define GATHER
#else

#define SCATTER
#endif

Assignment: Test both gather and scatter compilations, andrdeite performance as a basel
for future experiments. These commands will beluseecompile and execute LBM for each

(edit benchmarks/lbm/src/ cuda/layout_config.h)
$> ./parboil clean Ibm cuda
$> ./parboil run Ibm cuda short

Gather Scatter

GPU time

b) Array of Structures vs. Structure of Arrays

Description: Note that the flattening function CALC_INDEX compsata 1D index from a 4
index, with the dimensions, in oir, beingelement, x, y, andz. In other words, it computes a 1D inc
from x, y and z according to remajor layout rules (see lectures slides on layouttiplies that inde:
by the number of elements in a cell, and adds #necplar offset of the ement requested

#define CALC_INDEX(x,y,z,€) (e + (N_CELL_ENTRIES * \
((X)+(y)*PADDED_X+(z)*PADDED_X*PADDED_Y)))

16

Lab 2A: Data Layout Transformation m }NWEIRZW{:LU}O@L\gwgm%wg
This is called the “array of structures” layoutchese if the cells were declared as C struct

with named fields, this is the layout that would reswith fields highlighted if several threads e

accessed a particular field of their own «

Assignment: Change the CALC_INDEX macro on lines 29 and 39%gbUlt_config.h so that
instead represents a “structure of arrays”. Tasaothe mapping function must compute a 1D ir
from x, y and z as before, but then muy element by the total size of the grid in theyxand z
dimensions and add that number to the 1D inc

Solution:

#define CALC_INDEX(x,y,z,e) (TOTAL_PADDED_CELLS*e +\
((X)+(y)*PADDED_X+(z)*PADDED_X*PADDED_Y))

The 1Dindex from x, y and z is not scaled at all, in cast with the previous case. This lay
is called the “structure of arrays” layout becaitsis the layout that would result in declaring &
structure containing, for each component, an afoaythe tire simulation lattice's values of tt
component. The transformed layout conceptuallikdanore like this

Measure the performanegain, with both scatter and gather variations, réedrd them. Begi
by copying your previous run times in the “ArraySQtfuctures” columi

17

Lab 2A: Data Layout Transformation

GPU Time

Scatter

Gather

Array of Structures

Structure of Arrays

c¢) Adding Padding

ILLINOIS

Description: In addition to changing the order mdiexes, you can add padding to anyhe x, y
or z dimensions to change the alignment propediethe data structure. For instance, by addii
padding of 28 elements to the X dimension, the ddex computed from x, y and z will always b

multiple of 128 if x is 0.

Assignment: Set thepadding of the x dimension to 28 by changing tHeeaf PADDING_X in

line 15 of layout_config.h, and measure the peréoroe agail

Solution: change layout_config.h line 1t

#define PADDING_X (28)

GPU Time: Padded Arrays

Scatter

Gather

Array of Structures

Structure of Arrays

4. Questions

Of all the configurations you tested, which onedgrened best? Of the SoA/A0S a
gather/scatter combinations, which ones were magtaved by padding? Why? Can you think of
other padding oflattening function combinations that may perforve better? Try them out, and ¢
if you can explain their performance as we

18

o . _ o ILLINOIS
Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Lab 2B: Binning with Uniform Distributions

Hee-Seok Kim (kim868@illinois.edu), Christopher Rodriguez (cirodrig@crhc.uiuc.edu)

1. Objective

This lab is an introduction to binning as a techeigo help solve problems efficiently. As a ¢
study, we investigate the calculation of electristpotential maps, which consists of a reguli
spaced lattice of points in a spacintaining the summed potential contributions frora #toms. Yot
will learn how bnning can help solve problems both CPU and GPU efficiently. Also you w
discover how different tweaks in binning could lgadsignificant performance variatioFinally, you
will be challenged with nomniform input data, which does not lend itself tofarm binning thus
motivating new and innovative approacl

2. Prerequisite

In order to go through this lab, you need to haweleustanding of basic C and CUI
programming skills.

3. Brief Review: What is Binning? What Binning is br?

Binning is a process that groups data to form ankhcalled bin. Each bin can have a
representative property of data inside the bin. NVbata are properly binned, the problem sol
could be coarsened due to the representative propertyirof This can bring great optimizati
opportunity with higher abstraction on input d

Binning is useful for various algorithms dealingthvhuge data. Ray tracing, for example, t
KD-tree which is a kind of nooniform sized bins that divides a scene into mldtlpounding boxes t
group polygons close to each other. We can ignaeynpolygons inside bounding boxes that hav:
chance of colliding with a ray being trac

4. Problem Statement: Columlic Potential

The electrostatic interactions between atoms apadicular importance in molecular simulati
Atoms are modeled as point charges by assigniegc¢h atonl at positiors, a fixed partial chargg;.
Closely related to the electrostaforce and interaction energy between atoms is thetrestatic
potentialV at a positiosrsexpressed here as a sum oveN atoms,

19

ILLINOIS

Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

A

V(757 Py oo T = D s (7))

= -5
= Amelr—7l

In this lab, Eqg. 1 is sampled at regularly spaceimtp over a volume to generate a map of
electrostatic potential in that volume. In this &granges over a set &fl regularly spaced lattice
points. Setting the functisiir) = 1calculates he full (infinite distance) electrostatic poten
contributed by all atoms to positss, requiring quadratic computational work. Algoritienefficiency
is improved by choosing(r) to yield a cutoff potential truncated beyond a dixautoff distancer.. A
common choice is given by

S(T‘):{l_g ,lfT'<T'C qu

which smoothly shifts the potential to zero beyr. and regains the full electrostatic potentia
the limit asr. approaches infinity. Figure 1 illustrates how tlectostatic potential map is compult
and therendering of the map according

Potential map computed

p /H]

Atom

-
-
-
-
-
%
~
~
~
~

Simulation volume .

Figure 1: An Electrostatic Potential Map in a Simuation Volume

The computation of electrostatic potential mapditiectly applicable to ion placement methc
used to initially setup a biomolecular system. Mwer it is useful for the anysis and visualization of
the completed simulation; for instance, when vigira the electrostatic contour lines aroun
molecular surface.

5. Approaches: From Naive to Binnin
5.1 Naive Approach

The naive approach follows thquations shown above as Eq. 1 and Eq. 2. It iter@ater ever)
point on the output grid and on each point it sumshe Columbic Potential from atoms around it.
implementation is given ihenchmarks/cp/src/1.

20

ILLINOIS

Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

5.2 Binning Approach

We could get severanportant observations from the naive implemeaatags belov
1) It is wasteful to visit all atoms when the ctitistance is relatively sme

* We can enhance the performance if we efficientlytbe list of atoms within the cutc
distance for any gen output grid poin

2) The cuteff distance is fixed through the algorithm r
» We can create a list of neighboring points thatwigin or along the cut off distance ir
fixed size grid spac

With these observations, we could optimize the aiapproach if we divide the simulatit
volume into a set of fixed size cubes that areaunify distributed. It involves performing spat
hashing of the atoms into bins of a uniform gritlem there is a neighborhood of bins that lie witt
straddle thecut off radius for some points in the output gricherefore, we could derive anott
implementation as below.

Phase 1. Perform spatial hashing of the atoms intoins

& ; ‘0
< ¢ | | | |
* ‘ AT 1y
. A 1A |
* * l * } |

(a) Simulation (b) Simulation
volume volume
with eight bins

Figure 2: Binning Example of the Simulation Volumt

In this phase, the simulation lume is divided into bins of the same size and ciépaas
illustrated in Figure 2. The number of atoms per isi almost equal since we assuthat atoms are
uniformly distributed in the simulation volume. Yeull be given the initial configuration of nning
such as size and capacity of a bin in the codeeilegless, some binsight not contain all atoms th
fall into them due to the fixed capacity of a bdbviously these atoms should not be omitted any
so let’s collect them and process naivlater.

When performing the binning, we would like to adxtra bins surrounding the simulati
volume. This comes in order to make the computatione regular around the edges of the simule
volume. Once we extend the simulation volume i thiay, wedon't need to care about edges
clipping conditions and so oiVe will also use a bounding cube ra than a sphere for the seal
space of an output grid poiritlote that these are the basic implementation i Figure 3 illustrates
these ideas.

21

ILLINOIS

Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Extended simulation Extended simulation
volume volume

/ ' A
* i e Cutoff disthnce
L4
®
L 4
& *
Pl § //
Simulation volume Simulation volume
(a) Simulation volume (b) A comer of simulation volume (b) A corner of simulation volume with
with extra bins with extra bins in a projected extra bins in a projected view. The
view. Bounding sphere looks a Cube is easier to calculate the
circle. neighboring bins.

Figure 3: lllustration of the Simulation Volume Extension
Pseudo code below shows how to create

bins = [][BIN_CAPACITYT; /I List of arra y
extra_atoms = [J; /l To be handle d naively later
for each atom a,
bin_loc = a.loc/ BIN_SIZE; /I Spatial hashing, radix sort
bin = bins[bin_loc]
if bin is not full,
bin.add(a);

else
extra_atoms.add(a);

Phase 2. Create neighborhood li:

This phase deals with identification of the neigtiiomd of ¢ region to be used in cutc
summation. The shape of neighborhood is precompuigdrespect to the binning lattice in the fo
of a list of neighbor offsets. As shown in Figui@)3 the area within the cut off radius forms aesp!
in 3-dimensional sp&c In this lab, however, we assume that the shapeighborhood is a boundir
cube that has the sphere inside as shown in Figimeand (c) to reducehe programming effort,
though it might cause some degree of inefficiercthe performanc

The following pseuda@ode computes the neighborhood list for a boundurige

neighbor_list = [];

For offset from - (cut off radius) to +(cut off radius),
/I NOTE: uncomment below to make it a bounding sphe re.
/I if (distance from zero to offset <= cu t off radius) then

neighbor_list.add(offset);

}

Phase 3: Calculate the electrostatic potential m:

This phase calculates the electrostatic potentégd osing the bins and neighbor list that are ¢
in the previous phases. The idea is to iterateoutput grid and for each point neighboring bins tar

22

ILLINOIS

Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

be identified and summed up. The atoms that didihotto bins need to processed by the CPU u
the naive approach. The pseuxtme is shown as belc

// Part 1. compute with bins
For each outpu t grid point p,
// identify central bin from the location of p
center_bin = bins[p.loc / BIN_SIZE];
for n in neighbor _list,
bin = bins[center_bin.pos + n.pos];
for each atom in atoms in bin,
dist = |p.loc — atom.loc|
p.energy += atom.g/dist*s(dis t /Is(dist) by Eq. 2

/| Part 2. Handle extra atoms
For each output grid point p,
for each atom in extra_atoms,
dist = |p.loc — atom.loc|
p.energy += atom.q / dist * s(dist)

6. Implementation

6.1. Review the Naive Implementatio

The purpose of thistep is to get you familiar with basic idea to sotlie problem. In this ste
you don’t need to implement anything. Instead, gbauld be comfortable with the source cc
and some data structures that are provided. Plepse benchmarks/cp/src/1/cenergy. c.

Function calc_energy() is the common interface to solve the problem. Thame anc
description of the function parameters are showralrle 1

Table 1: A Few Important Data Structures

Name Type Description
energygrid float* One dimensional arrato contain output points, which is as big as grid
grid.y * grid.z in linear address for
grid voldim3i | Dimension of output energy grid where cumulativeteptal is to be

summed up. Note that grid.z equals to 1 to makeottput grid a singl
plane Voldima3i is defined as:

typedef struct _tag

intx,y, z
} voldim3i;
atoms float* Atoms information as follow
atoms[4 * n + 0] : x coordina
atoms[4 * n + 1] : y coordina
atoms[4 * n + 2] : z coording
atoms[4 * n + 3] : particle char
(0 <= n< numatoms)

numatoms int Number of atoms in the simulation volu
gridspacing float Size of output grid lattice spe
k int Z-axis of the output grid pla

23

ILLINOIS

Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Fill in the execution time in the following instriien table

Source code to work $PARBOIL_ROOT/benchmarks/cp/src/ 1/cenergy.c

cd SPARBOIL_ROOT
./parboil run cp 1 uniform

How to build & run

Time to run (measure it!)

6.2 Binning

Throughout this step, you will implement the birgialgorithm you have studied previous
This step has three sseps each of which is related to a phase of tperithm described in Sectic

5.2 (Binning Approach). The following code snippstthe body ofcalc_energy () function in

// Phase 1. Perform the binning process
create_uniform_bin(grid, num_atoms, gridspacing, at oms, cutoff);

// Phase 2. Create the neighbor list
sol_create_neighbor_list(gridspacing, cutoff);

// Phase 3. Calculate energy using the bins and the neighbor list
1/
sol_calc_energy_with_bins(
energygrid, grid, atoms, num_atoms, gridspacing, cu toff, k);
calc_extra(energygrid, grid, gridspacing, cutoff, k ;

I/}
benchmarks/cp/src/2. 1/cenergy. ¢ that computes the result which revedllssteps of the algorithm.

You will be asked to implement the functions calieccalc_energy (). Note that it is strongly
recommended to follow all the steps provided hezeabse later steps might require the resu
previous steps.

6.2.1 Implement uniform bins and spatial hashing aims onto then

You need to create bins of uniform ¢ which divide the extended simulation volume.
mentioned earlier, this stage corresponds to Phadehe algorithm shown in Phase 1 of Section
You need to fill Functiorcreate_uniform_bin() accordingly. Open the source code and searc!
” Step 2.17 . Once you do it correctly, it will print o1 “Pass” .

Source code to work $PARBOIL_ROOT/benchmarks/cp/src/ 2.1 /cenergy.c

cd $PARBOIL_ROOT

How to build & run # ./parboil run cp 2.1 uniform

24

ILLINOIS

Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN
6.2.2 Implement list of neighborhood bin

Next, you need to create list of neighboring bimsé given location in the simulation volume.
this step, you need to fill Functiccreate_neighbor_list() accordingly. Open the source code
search for’ Step 2.2” . Similarly, once you do it correctly, it will prirout “Pass” . Note that you
may skip the previous stage by callisol_create_uniform_bin() instead create_uniform_bin() in
Function calc_energy().

Source code to work $PARBOIL_ROOT/benchmarks/cp/src/ 2.2 /cenergy.c

cd $SPARBOIL_ROOT
./parboil run cp 2.2 uniform

How to build & run

6.2.3 Implement columbic potential kerne

With the bins and neighborhood list you have domdas, finally you can implement a kerr
which corresponds to Phase 3 of the algorithm. ks tstage, yc need to implement
calc_energy_with_bins() accordingly. Open the sewmde and search f “Step 2.3” . You might
need to reuse what you have done in Steps 2.1 .2ndf ¥ou want to skip them and use the refere
implementation, use sol_create_uniforin() and sol_create_neighbor_list() in Funct
calc_energy(). Write down the execution time when gucceed for later comparison with the C
version.

Source code to work $PARBOIL_ROOT/benchmarks/cp/src/ 2.3 /cenergy.c

cd $PARBOIL_ROOT
./parboil run cp 2.3 uniform

How to build & run

Time to run (measure it!)

6.3 Optimize the Performance on the GP

6.3.1 Naive Approach

Now let's move on to the GPU version. Among thee¢hphases of the algorithm, the last
seems a prop&andidate for a GPU to handle. As such, we alsodan the last phase of the algorit
in this step. Your mission is to implement a CUD&sion of what you have done previously. Oper
source code and search for “Step 3.1". The straefy map outut grid points onto CUDA grids ar
let the threads for each grid visit all the atomthiw the cutoff range. This should look very siani
what you have done in Step 2.3. Write down the @atx@c time when you get the correct result. Ag
you may use th reference implementation for 2.1 and

Hint: Try to allocate a thread block for an output granp. Then let the threads in the blo
contribute to the outputlf you haven't finished 2.3 yet, you can start from3.1-help which
implements the idea 6this step

25

ILLINOIS

Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Source code to work $PARBOIL_ROOT/benchmarks/cp/src/ 3.1 /cenergy.cu

cd $PARBOIL_ROOT

How to build & run # Jparboil run cp 3.1 uniform

Time to run (measure it!)

6.3.2 Tiling Approach

Simply peeling the loop and mapping each loop inea thread index or a block index sho
work nicely; however, it can also be optimized fert The observation from Step 3.1 is that atc
being loaded from the global memory will be usedly@nce which wastes the memory bandwi
The goal of this step is to optimize the memorydveidth.

Once you load a bin and the atoms in it, they camsed or multiple output grid points nearl
due to the coarse binning. Following is pse-code for the modified implementation. You should
able to configure the grid and the blocks for théD@ kernel properly

Hint: If you haven't finished 2.3 or 3.1 yet, ou can start from 3.z-help which implements
the idea of this stepFollowing is the pseuc-code.

For each output grid block b, / blocks, not points
center_bin = bins[b.loc / BIN_SIZE];
for n in neighbor_list,

bin = bins[center_bin.pos + n .pos];

for each atom in bin.atoms,
for each point p in b, // iterate points in the b lock
dist = | p.loc —atom.loc |

p.energy += atom.q / dist * s(dist)
Please refer to the instruction as be

Source code to work $PARBOIL_ROOT/benchmarks/cp/src/ 3.2 /cenergy.cu

cd $PARBOIL_ROOT
.[parboil run cp 3.2 uniform

How to build & run

Time to run (measure it!)

Once it works, you can cache atoms in the sharedane It will provide you with slightly bette
performance.

7. Questions

1. Why does Step 3.2 have better potential Step 3.1 in terms of memory performar

26

ILLINOIS

Lab 2B: Binning with Uniform Distribution UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

2. Can you point out data structures that levefagir memory system such as context men
texture memory or shared memory? Explain and imptenyour answer. How much performai
improvement can you expect?

3. How does the performance change when we adjusbititeng configuration? Specificall
what happens when we change the capacity of thirdim8 to 4? Why does that happ

4. Try using noruniformly distributed input data by changing infiratm uniforrr to
non_uniformWhat happens? What will you do to rectify this attan? What do you think a
problems with your solution?

27

ILLINOIS

Lab 3: Binning with Non-UnifornDistributions UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Lab 3: Binning with Non-Uniform Distributions

Nasser Anssari (anssaril@illinois.edu), Nady Obeid (obeid1@illinois.edu)

1. Objectives

In Lab 2B (Binning with Uniform Distributions), yoaptimized the execution of the Columl
Potential application using the binning technique axplored the benefits of spatially decompo:
the computation and data in a manner which naturatips tt CUDA thread blocks and efficient
uses the memory system. Moreover, you took advargathe uniform distribution of the input data
hone your implementation. In this lab, you will lomto another example of applications which
window functions (functions which are ze-valued outside some chosen interval), namely |
reconstruction. In particular, you will analyze timepact of its no-uniform data distribution on tr
performance of the algorithmic approach of Lab 2&l @onsider other alternves which may be
bettersuited for such distributior

2. Lab Applications

Efficient computation of window functions is of piaular importance due to their prominence
molecular modeling applications in domains thanspi@chemistry, materials sciet, thermal science,
and astrophysics. Typically involving a large numioé data points in multiple dimensions, st
applications require novel spatial data structaed search algorithms, such as binning, for efiitc
data representation and query

3. Prerequisite Knowledge

1) Basic C Language and CUDA programming s
2) Familiarity with major data structures and altfons such as sorting and vector reduc

4. Theoretical Backgrounc

The MRI Reconstruction application, the exampleliappon of this lab, transforms MR da
samples from the kpace into the image space using IFFT. Since MBhrsers typically use spir
trajectories in a cylindrical or spherical coordmasystem (Figure 1), the image cannot
reconstructed by directly applyinFFF to the k-space samples.

Figure 1: Typical Data Acquisition
Paths in MRI Scanning

Lab 3: Binning with Non-UnifornDistributions m }NWEIRZW{:LU}O@L\gwgm%wg
Instead, in a commonly used approach called grgjdime samples are first interpolated ont

uniform Cartesian grid and then reconstructed uskT (Figure). A convolution approach 1

gridding takes a lspace data point, convolves it with a gridding kérand accumulates the results

a Cartesian grid. The gridding kernel uses K-Bessel function, a window functic

The chief advantage of window fuions comes from skipping input points which arewndo
be outside the cutoff radius for a localized regodrihe output grid. Still, a distance test is regbdo
check for the input points which satisfy this cdimti. To minimize the volume whose in data needs

Cartesian Scan Spiral Scan

Data Data

ky Gridding A ky

I
kx Aky o (x
I—:—v—b

1 / kx
FFT

Figure 2: MRI Reconstruction

to be processed, input points can be spatially dehstito bins prior to output computation. A r-
uniform distribution of input data, such as thatteé Columbic Potential application of Lab 2B, alk
using a preallocated array of bins with equal capacities tdimpe the implementation of tf
algorithm. Such a data structure, however, is néBle for noruniform data distributions for reasao
which will become evident through the course ofstlhab. Tlis renders the previously tailor
implementation inefficient and thus motivates pngpalternative approach

One example approach substitutes “implicit dynantiici's for the “explicit static” ones. Whi
the output lattice is still decomposed into t of predetermined bins, the input data is sort@sed or
the indices of these bins rather than distributest @ pr-allocated array thereof. The varying size:
the resulting implicit bins require a subsequeduntion step to determine the beginr of each bin in
the sorted input array (Figure 3). To improve thad balance across the bins processed on the C
limit can be imposed on the bin capacity so thatdtperfluous data points from all bins are grot
and offloaded to the CPU.

29

o _ _ o ILLINOIS
Lab 3: Binning with Non-UnifornDistributions UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

Input Array |1 (3(2(0(1|1|2(5
Sort
d Y
Sorte
oot Array |02 [)2]2B] 5
01 2 3|45 6 7
ScIm
Starting Ilndeces ol1lalel7l 718
of Bins
)
Thread Block 0 Thread Block 1

01 2i{3 4 5

Figure 3: Sort-Reduce Variant of Binning
5. Implementation Details

This section details the implementation of the t-reduce” algorithmic variant of binning in tl
context of the MRI reconstruction application asyided in the ancillary lalmaterial. Each of the
steps described below, except the last, corresponalseparate GPU kerr
1) Spatial Hashing and Partitioning

The implementation proceeds with determining these$t bin to every input sample wr
maintaining this information itwo interrelated arrays: one for the indices ofitiput samples, and tt
other for the indices of the bins to which they arapped. A third array is used to keep track of
number of sample points mapped to each bin. Ifrarbaches maximum capa(any additional
sample points intended for it are mapped to anflovelist to be processed on the CPU. This listst
serves as a single bin which spans the entire byt

2) Sorting

The bin indices array and the sample indices dnay Step 1 ee sorted as a k-value pair to
congregate the indices of the samples belonginigegame bil

30

ILLINOIS

Lab 3: Binning with Non-UnifornDistributions UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

3) Reordering

Using the sorted keyalue arrays from Step 2, the sample points inotfiginal input array ar
shuffled to form implicit bins. Sorting and rdering are broken into two steps because the g
kernel only accepts values of the Integer data.

4) Scanning

The implicit bins from Step 3 have variable capasitand thus their starting locations
unknown. A reduction opetian is performed n the array of bin indices to tally the number afples
in each bin and determine its starting loca

5) Gridding
A KaiserBessel function is used to construct the outpud om the binned input (Figure ¢
The CPU and the GPU process their resive portions of the input concurrently, thereby lexjng

the full computational power of the system besidi#izing the CPU to improve the load balance
the GPU.

for (every sample point s) {
for(z range) {
for (y range) {
for (x range) {
weight = kaiser bessel (|<s.coords>-<x,y,z>|)

grid[z] [y] [x] += s.value * weight;

Figure 4: Pseudt-code of the Gridding Step
6) Merging
The partial results frorthe CPU and the GPU from Step 5 are merged intéirtakoutput grid

6. Procedure

1) You will start with investigating the limitatignof the binning approach of Lab 2B with
uniformly distributed data. To this end, you areoyded with an implemention of the MRI
Reconstruction application which uses this approdtie implementation is fully functional, so y
only need to familiarize yourself with the souraae (Figure 5). You are given a default input de
30144488 samplewhich the applicaon maps onto 428x128x128 Cartesian gri.

31

ILLINOIS

Lab 3: Binning with Non-UnifornDistributions UNIVERSITY OF LLINGIS AT URBANA.CHAMPAIGN

File: MRI_Gridding.cu

Functions:
main(...)

File: CUDA_Interface.cu

Functions:
CUDA_interface(...)

File: CPU_kernels.cpp File: GPU_kernels.cu
Functions: Functions:
create_uniform_bin(...) gridding_GPU(...)

gridding_CPU(...)

Figure 5: File Hierarchy of Lab 3.1

Run the application (Table 1) using different bapacities and standard deviations and recor
corresponding execution information (Table 2). Tgerametrs field in the input description fil
specifies the bin capacity (first value in thedijehnd the standard deviation (second va

Table 1
Source Code Path $PARBOIL_ROOT/benchmarks/3/src/3.1
Input Description File Path gzglé%(l)lzl)l__r_lgﬁOT/benchmarks/3/|nput/default/

C ilati dE tion C #cd PARBOIL_ROOT
ompriation and EXecution Lommanc | ., \,aoil run 3 3.1 default

32

Lab 3: Binning with Non-UnifornDistributions

Table 2

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Bin Capacity

Standard Deviatior

16

32

48

64

80

16

% of Samples Processed on CF

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

48

% of Samples Processed on CF

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

80

% of SamplesProcessed on CP

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

112

% of Samples Processed on CF

% of Wasted Bin Locations

Binning Time

GPU Computing Time

Total Execution Time

Did you identify any patterns for the changes ia theasured quantities? Can you explain :
patterns? Keep in mind that larger standard de@natmean more uniform-distributed dat:

2) Next, you will explore the advantagesthe binning algorithmic variant described in thab.
As a starting point, you are given a skeleton im@etation (Figure 6) comprising five GPU kerr

which correspond to the first five steps outlinedsection £

33

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Lab 3: Binning with Non-UnifornDistributions

File: MRI_Gridding.cu

Functions:
main(...)

File: CUDA_Interface.cu

Functions:
CUDA_interface(...)

File: CPU_kernels.cpp

File; GPU_kernels.cu

Functions:
create_uniform_bin(...)
gridding CPU(...)
gridding Gold(...)

Functions:
binning _kernel(...)
reorder_kernel(...)

gridding GPU(...)

Figure 6: File Hierarchy of Lab 3.2

Complete the GPU kernels (Table 3) correspondirStep 1 (spatial hashing and partitioning
andStep 3 (reordering)described in Section 5. The kernels correspondingtép 2 (sorting), Step
(scanning), and Step 5 (gridding) have been alreathefor you. The correctness of your solution
abin capacity of 80andstandard deviation of 1¢ will be confirmed with &Pass” message.

Table 3
$PARBOIL_ROOT/benchmarks/3/src/3.2

GPU_kernels.cu

Input Description File Path %PE,EIZI??(I)FI)EI_TSSOT/benChmarks/3/|nput/default/

Source Code Pattr
Source File to Modify

Compilation and Execution #cd PARBOIL_ROOT
Command #./parboil run 3 3.2 default

Once again, run the application using different ¢tapacities and standard deviations and re
thecorresponding execution information (Table

34

Lab 3: Binning with Non-UnifornDistributions

Table 4

ILLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Bin Capacity

Standard Deviatior

16

32

48

64

80

% of Samples Processed on CF

% of Wasted Bin Locations

80

Binning Time

GPU Computing Time

Total Execution Time

% of Samples Processed on CF

% of Wasted Bin Locations

112

Binning Time

GPU Computing Time

Total Execution Time

% of Samples Processed on CF

% of Wasted Bin Locations

144

Binning Time

GPU Computing Time

Total Execution Time

% of Samples Processed on CF

% of Wasted Bin Locations

176

Binning Time

GPU Computing Time

Total Execution Time

How do the results compare to those of Lab 3.1?yDid notice thabins with larger capacitie

can be used?

7. Questions

1) What are the limitations of the binning approath.ab 2B when used with n-uniform data
distributions? How does the algorithmic variantsareed in this lab circumvent these limitatic

35

Lab 3: Binning with Non-UnifornDistributions m }NWEIRZW{:LU}O@L\gwgm%wg
2) In ths lab, the MRI Reconstruction application is pkladed by dividing the output poin
across the parallel threads of execution. Conwgrded application can be parallelized by dividthg
input samples across the threads. Since a singl& sampl affects multiple output points in i
vicinity, however, atomic operations are required €orrect execution in this case. While ato
operations typically induce performance penaltsegh a parallelism structure still proves to been
efficient for certain data distributions. Do you expect this obetgon to materialize towards tl
uniform or the noruniform end of the data distribution? Try to vatelayour conclusion b
implementing this parallelism structure and runrtimg resultant kerne

36

