Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 1: Introduction and Computational Thinking
Course Objective

• To master the most commonly used algorithm techniques and computational thinking skills needed for many-core GPU programming
 – Especially the simple ones!

• In particular, to understand
 – Many-core hardware limitations and constraints
 – Desirable and undesirable computation patterns
 – Commonly used algorithm techniques to convert undesirable computation patterns into desirable ones
Performance Advantage of GPUs

• An enlarging peak performance advantage:
 – Calculation: 1 TFLOPS vs. 100 GFLOPS
 – Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

 ©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24-25, 2011

– GPU in every PC and workstation – massive volume and potential impact

©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24-25, 2011
CPUs and GPUs have fundamentally different design philosophies.
UIUC/NCSA AC Cluster

- 32 nodes
 - 4-GPU (GTX280, Tesla) nodes
 - GPUs donated by NVIDIA
 - Host boxes funded by NSF CRI
- Coulomb Summation:
 - 1.78 TFLOPS/node
 - 271x speedup vs. one Intel QX6700 CPU core w/ SSE
EcoG - One of the Most Energy Efficient Supercomputers in the World

• #3 of the Nov 2010 Green 500 list
• 128 nodes
• One Fermi GPU per node
• 934 MFLOPS/Watt
• 33.6 TFLOPS DP Linpack

• Built by Illinois students and NVIDIA researchers

©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24–25, 2011
GPU computing is catching on.

- 280 submissions to GPU Computing Gems
 - 110 articles included in two volumes
A Common GPU Usage Pattern

• A desirable approach considered impractical
 – Due to excessive computational requirement
 – But demonstrated to achieve domain benefit
 – Convolution filtering (e.g. bilateral Gaussian filters), De Novo gene assembly, etc.

• Use GPUs to accelerate the most time-consuming aspects of the approach
 – Kernels in CUDA or OpenCL
 – Refactor host code to better support kernels

• Rethink the domain problem
CUDA /OpenCL – Execution Model

• Integrated host+device app C program
 – Serial or modestly parallel parts in host C code
 – Highly parallel parts in device SPMD kernel C code

```
Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);
```
CUDA Devices and Threads

• A compute **device**
 – Is a coprocessor to the CPU or **host**
 – Has its own DRAM (**device memory**)
 – Runs many **threads** (work elements for OpenCL) **in parallel**
 – Is typically a **GPU** but can also be another type of parallel processing device

• Data-parallel portions of an application are expressed as **device kernels** which run on many threads

• Differences between GPU and CPU threads
 – GPU threads are extremely lightweight
 • Very little creation overhead
 – GPU needs 1000s of threads for full efficiency
 • Multi-core CPU needs only a few
Arrays of Parallel Threads

- A CUDA kernel is executed by an array of threads
 - All threads run the same code (SPMD)
 - Each thread has an index that it uses to compute memory addresses and make control decisions

```c
... float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
...
```
Thread Blocks: Scalable Cooperation

• Divide monolithic thread array into multiple blocks
 – Threads within a block cooperate via **shared memory, atomic operations and barrier synchronization**
 – Threads in different blocks cannot cooperate

```c
... float a = input[threadIdx];
float b = func(a);
output[threadIdx] = b;
...
```
blockIdx and threadIdx

- Each thread uses indices to decide what data to work on
 - blockIdx: 1D or 2D
 - threadIdx: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - ...
Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition

__global__
void vecAdd(float* A, float* B, float* C, int n)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if(i<n) C[i] = A[i] + B[i];
}

int main()
{
 // Run ceil(N/256) blocks of 256 threads each
 vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, n);
}
Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global__
void vecAdd(float* A, float* B, float* C, int n)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 if(i<n) C[i] = A[i] + B[i];
}

int main()
{
 // Run ceil(N/256) blocks of 256 threads each
 vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, N);
}
Kernel execution in a nutshell

__host__

```
vecAdd<<<P,B>>>(n,a,x,y);
```

__global__

```
void saxpy(int n, float a,
float *x, float *y)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    if( i<n )  y[i] = a * x[i] + y[i];
}
```

Schedule onto multiprocessors

GPU

©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24-25, 2011
Harvesting Performance Benefit of Many-core GPU Requires

• Massive parallelism in application algorithms
 – Data parallelism

• Regular computation and data accesses
 – Similar work for parallel threads

• Avoidance of conflicts in critical resources
 – Off-chip DRAM (Global Memory) bandwidth
 – Conflicting parallel updates to memory locations
Massive Parallelism - Regularity
Main Hurdles to Overcome

- Serialization due to conflicting use of critical resources
- Over subscription of Global Memory bandwidth
- Load imbalance among parallel threads
Computational Thinking Skills

• The ability to translate/formulate domain problems into computational models that can be solved efficiently by available computing resources
 – Understanding the relationship between the domain problem and the computational models
 – **Understanding the strength and limitations of the computing devices**
 – **Defining problems and models to enable efficient computational solutions**
DATA ACCESS CONFLICTS
Conflicting Data Accesses Cause Serialization and Delays

• Massively parallel execution cannot afford serialization

• Contentions in accessing critical data causes serialization
A Simple Example

• A naïve inner product algorithm of two vectors of one million elements each
 – All multiplications can be done in time unit (parallel)
 – Additions to a single accumulator in one million time units (serial)
How much can conflicts hurt?

• Amdahl’s Law
 – If fraction X of a computation is serialized, the speedup can not be more than 1/(1-X)

• In the previous example, X = 50%
 – Half the calculations are serialized
 – No more than 2X speedup, no matter how many computing cores are used
GLOBAL MEMORY BANDWIDTH
Global Memory Bandwidth

Ideal

Reality
Global Memory Bandwidth

• Many-core processors have limited off-chip memory access bandwidth compared to peak compute throughput

• Fermi
 – 1 TFLOPS SPFP peak throughput
 – 0.5 TFLOPS DPFP peak throughput
 – 144 GB/s peak off-chip memory access bandwidth
 • 36 G SPFP operands per second
 • 18 G DPFP operands per second
 – To achieve peak throughput, a program must perform $1,000/36 \approx 28$ SPFP (14 DPFP) arithmetic operations for each operand value fetched from off-chip memory
LOAD BALANCE
Load Balance

- The total amount of time to complete a parallel job is limited by the thread that takes the longest to finish.
How bad can it be?

• Assume that a job takes 100 units of time for one person to finish
 – If we break up the job into 10 parts of 10 units each and have 10 people to do it in parallel, we can get a 10X speedup
 – If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5 units, the same 10 people will take 50 units to finish, with 9 of them idling for most of the time. We will get no more than 2X speedup.
How does imbalance come about?

- Non-uniform data distributions
 - Highly concentrated spatial data areas
 - Astronomy, medical imaging, computer vision, rendering, …

- If each thread processes the input data of a given spatial volume unit, some will do a lot more work than others
Eight Algorithmic Techniques (so far)

<table>
<thead>
<tr>
<th>Technique</th>
<th>Contention</th>
<th>Bandwidth</th>
<th>Locality</th>
<th>Efficiency</th>
<th>Load Imbalance</th>
<th>CPU Leveraging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiling</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Privatization</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularization</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaction</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Binning</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Layout Transformation</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thread Coarsening</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scatter to Gather Conversion</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Link: http://courses.engr.illinois.edu/ece598/hk/]
You can do it.

• Computational thinking is not as hard as you may think it is.
 – Most techniques have been explained, if at all, at the level of computer experts.
 – The purpose of the course is to make them accessible to domain scientists and engineers.
ANY MORE QUESTIONS?