Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 1: Introduction and Computational Thinking

Course Objective

 To master the most commonly used algorithm techniques and computational thinking skills needed for many-core GPU programming

- Especially the simple ones!

- In particular, to understand
 - Many-core hardware limitations and constraints
 - Desirable and undesirable computation patterns
 - Commonly used algorithm techniques to convert undesirable computation patterns into desirable ones

Performance Advantage of GPUs

- An enlarging peak performance advantage:
 - Calculation: 1 TFLOPS vs. 100 GFLOPS
 - Memory Bandwidth: 100-150 GB/s vs. 32-64 GB/s

GPU in every PC and workstation – massive volume and potential impact

CPUs and GPUs have fundamentally different design philosophies.

UIUC/NCSA AC Cluster

- 32 nodes
 - 4-GPU (GTX280, Tesla) nodes
 - GPUs donated by NVIDIA
 - Host boxes funded by NSF CRI
- Coulomb Summation:
 - 1.78 TFLOPS/node
 - 271x speedup vs. one
 Intel QX6700 CPU core
 w/ SSE

EcoG - One of the Most Energy Efficient Supercomputers in the World

- #3 of the Nov 2010
 Green 500 list
- 128 nodes
- One Fermi GPU per node
- 934 MFLOPS/Watt
- 33.6 TFLOPS DP Linpack

 Built by Illinois students and NVIDIA researchers

GPU computing is catching on.

280 submissions to GPU Computing Gems
 – 110 articles included in two volumes

A Common GPU Usage Pattern

- A desirable approach considered impractical
 - Due to excessive computational requirement
 - But demonstrated to achieve domain benefit
 - Convolution filtering (e.g. bilateral Gaussian filters), De Novo gene assembly, etc.
- Use GPUs to accelerate the most time-consuming aspects of the approach
 - Kernels in CUDA or OpenCL
 - Refactor host code to better support kernels
- Rethink the domain problem

CUDA /OpenCL – Execution Model

- Integrated host+device app C program
 - Serial or modestly parallel parts in host C code
 - Highly parallel parts in device SPMD kernel C code

CUDA Devices and Threads

- A compute device
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads (work elements for OpenCL) in parallel
 - Is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few

Arrays of Parallel Threads

- A CUDA kernel is executed by an array of threads
 - All threads run the same code (SPMD)
 - Each thread has an index that it uses to compute memory addresses and make control decisions

Thread Blocks: Scalable Cooperation

- Divide monolithic thread array into multiple blocks
 - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
 - Threads in different blocks cannot cooperate

blockIdx and threadIdx

Example: Vector Addition Kernel

Device Code

int main()

// Run ceil(N/256) blocks of 256 threads each

vecAdd<<<ceil(N/256), 256>>>(d_A, d_B, d_C, n);

Example: Vector Addition Kernel

```
// Compute vector sum C = A+B
 // Each thread performs one pair-wise addition
   global
 void vecAdd(float* A, float* B, float* C, int n)
 ł
      int i = threadIdx.x + blockDim.x * blockIdx.x;
      if(i < n) C[i] = A[i] + B[i];
 int main()
 {
      // Run ceil(N/256) blocks of 256 threads each
      vecAdd<<<ceil(N/256), 256>>>(d A, d B, d C, N);
                                                           15
©Won-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011
```


Harvesting Performance Benefit of Many-core GPU Requires

• Massive parallelism in application algorithms

– Data parallelism

- Regular computation and data accesses
 Similar work for parallel threads
- Avoidance of conflicts in critical resources
 Off-chip DRAM (Global Memory) bandwidth
 - Conflicting parallel updates to memory locations

Massive Parallelism - Regularity

Main Hurdles to Overcome

- Serialization due to conflicting use of critical resources
- Over subscription of Global Memory bandwidth

 Load imbalance among parallel threads

Computational Thinking Skills

- The ability to translate/formulate domain problems into computational models that can be solved efficiently by available computing resources
 - Understanding the relationship between the domain problem and the computational models
 - Understanding the strength and limitations of the computing devices
 - Defining problems and models to enable efficient computational solutions

DATA ACCESS CONFLICTS

Conflicting Data Accesses Cause Serialization and Delays

- Massively parallel execution cannot afford serialization
- Contentions in accessing critical data causes serialization

A Simple Example

- A naïve inner product algorithm of two vectors of one million elements each
 - All multiplications can be done in time unit (parallel)
 - Additions to a single accumulator in one million time units (serial)

How much can conflicts hurt?

Amdahl's Law

If fraction X of a computation is serialized, the speedup can not be more than 1/(1-X)

- In the previous example, X = 50%
 - Half the calculations are serialized
 - No more than 2X speedup, no matter how many computing cores are used

GLOBAL MEMORY BANDWIDTH

Global Memory Bandwidth

Ideal

©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24-25, 2011

Reality

Global Memory Bandwidth

- Many-core processors have limited off-chip memory access bandwidth compared to peak compute throughput
- Fermi
 - 1 TFLOPS SPFP peak throughput
 - 0.5 TFLOPS DPFP peak throughput
 - 144 GB/s peak off-chip memory access bandwidth
 - 36 G SPFP operands per second
 - 18 G DPFP operands per second
- To achieve peak throughput, a program must perform 1,000/36 = ~28 SPFP (14 DPFP) arithmetic operations for each operand value fetched from off-chip memory 27
 ©Wen-mei W. Hwu and David Kirk/NVIDIA, Berkeley, January 24-25, 2011

LOAD BALANCE

Load Balance

 The total amount of time to complete a parallel job is limited by the thread that takes the longest to finish

How bad can it be?

- Assume that a job takes 100 units of time for one person to finish
 - If we break up the job into 10 parts of 10 units each and have fo10 people to do it in parallel, we can get a 10X speedup
 - If we break up the job into 50, 10, 5, 5, 5, 5, 5, 5, 5, 5, 5
 units, the same 10 people will take 50 units to finish, with 9 of them idling for most of the time. We will get no more than 2X speedup.

How does imbalance come about?

- Non-uniform data distributions
 - Highly concentrated spatial data areas
 - Astronomy, medical imaging, computer vision, rendering, …
- If each thread processes the input data of a given spatial volume unit, some will do a lot more work than others

Eight Algorithmic Techniques (so far)

Technique	Contention	Bandwidth	Locality	Efficiency	Load Imbalance	CPU Leveraging
Tiling		Х	Х			
Privatization	Х		Х			
Regularization				Х	Х	Х
Compaction		Х				
Binning		Х	Х	Х		Х
Data Layout Transformation	Х		Х			
Thread Coarsening	Х	Х	Х	Х		
Scatter to Gather Conversion	Х					

http://courses.engr.illinois.edu/ece598/hk/

You can do it.

- Computational thinking is not as hard as you may think it is.
 - Most techniques have been explained, if at all, at the level of computer experts.
 - The purpose of the course is to make them accessible to domain scientists and engineers.

ANY MORE QUESTIONS?