Berkeley Winter School

Advanced Algorithmic Techniques for GPUs

Lecture 7: Input Compaction

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Objective

 To learn the key techniques for compacting input
data for reduced consumption of memory
bandwidth
— Via better utilization of on-chip memory
— As well as fewer bytes transferred to on-chip memory

e To understand the tradeoffs between input
compaction and input binning/regularization

©Wen-mei W. Hwu and David Kirk/NVIDIA 2
Berkeley, January 24-25, 2011

Sparse Data
Motivation for Compaction

= Many real-world
inputs are
sparse/non-uniform

= Signal samples,
mesh models,

transportation
networks,

communication
networks, etc.

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

Sparse matrix-vector multiplication

* Compute y«— Ax+y

* where A4 is sparse and x, y are dense

* Unlike dense methods, SpMV is generally

=

* unstructured / irregular
* entirely bound by memory bandwidth

& 2010 NVIDLA Corporation

x

<3

NVIDIA

Parallelizing CSR SpMV <X

NVIDIA
Compressed Sparse Row

* Straightforward approach

* one thread per matrix row

Thread 0 r,3 0 1 ow
Thread 1 0O 0 0 O
Thread 2 0 2 4 1
Thread 3 1 0 0 1

@ 2010 NVIDIA Corporation

CSR SpMV Kernel (CUDA) <X

NVIDIA

int row = blockDim.x * blockIdx.x + threadIdx.x;
if (row < num rows) {

float dot = 0;

int row start = ptr[row];

int row end = ptr[row + 1];

for (int jj = row _start; jj < row_end; jj++)

dot += data[jj] * x[indices[]j]j]]:
v[row] += dot;

Row 0 Row 2 Row 3
{ EEY EEEEs iy]

Nonzero values data[7]

Column indices indices[7] = { O, 2, 1, 2, 3, 0, 3 };

Row pointers ptr[5] {0, 2,2, 5,71};

@ 2010 NVIDIA Corporation

Problems with simple CSR kernel

¢ Execution divergence
varying row lengths

® Memory divergence
* minimal coalescing

Nonzero values

Column indices

©® 2010 NVIDIA Corporation

Row pointers

data[7]

indices|[7]

ptr[5]

{
{

{

Thread 0 3 0 1
Thread 1 O 0 O
Thread 2 0 2 4
Thread 3 1 0 O

#0 #1 #0 #1 #0 #2 #1
3,1, 2, 4, 1, 1, 1

0, 2, 1, 2, 3, 0, 3

0, 2, 2, 5, 7 };

>

NVIDIA

Iteration

};
};

Problems with simple CSR kernel <3

NVIDIA

* Memory divergence
* minimal coalescing

N
>R FNF I
& & L& &
< N\ L &L

© 2010 NVIDIA Corporation

Regularizing SpMV with ELL format <3

NVIDIA

* Storage for K nonzeros per row
* pad rows with fewer than K nonzeros

ELLPACK
* inefficient when row length varies ¢

]
B —.

-

I

I
HEENE

I

© 2010 NVIDIA Corporation

Thread 0
Thread 1
Thread 2
Thread 3

@ 2010 NVIDIA Corporation

Values

J

Regularizing SpMV with ELL format

* Quantize each row to a fix length K

Columns

.
o 2 *

¢ Layout in column-major order
* vyields full coalescing

<

NVIDIA

Memory Coalescing with ELL

Values Columns

Thread 0

Thread 1

Thread 2
Thread 3

data 3 | * | 2 | 1| 1| |4 | 1| *]*|1

index O * 1 1 2 * 2 3 * * 3
|

©Wen-mei W. Hwu and David Kirk/NVIDIA 11
Berkeley, January 24-25, 2011

Exposing maximal parallelism rﬁ%a

* Use COO (Coordinate) format

* list row, column, and value for every non-zero entry

Nonzero values datal[7] {3,1, 2, 4, 1, 1, 1 };
Column indices cols[7] = { 0, 2, 1, 2, 3, 0, 3 };

Row indices rows[7] = { O, O, 1, 1, 1, 2, 2 };

¢ Assign one thread to each non-zero entry
* each thread computes an A[i,j]*x[j] product
* sum products with segmented reduction algorithm
* largely insensitive to row length distribution

© 2010 NVIDIA Corporation

Hybrid Format

¢ ELL handles typical entries

COO handles exceptional entries

* Implemented with segmented reduction

.

LI _

1 O

© 2010 NVIDIA Corporation

-

L] UL

+

>

NVIDIA

Any More ldeas?

e JDS format

— Sort rows according to their number of non-zero
elements

e Can use Hybrid with JDS and and launch
multiple kernels

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

14

«

>
NVIDIA

Sparse formats for different matrices

@ 2010 NVIDIA Corporation

Structured Matrices <X

NVIDIA.

®#COO ©CSR (scalar) ®CSR (vector) ®DIA ©ELL
20

18

14
12

10

GFLOP/s

Laplacian 3pt Laplacian 5pt Laplacian 7/pt Laplacian 9pt Laplacian 27pt

@ 2010 NVIDIA Corporation

Unstructured Matrices <X

NVIDIA
®COO @oCSR (scalar) ®CSR (vector) eHYB
18
°
16 o
14
o ® .
12 o ®
o ® ®
a 10
S °
l-‘s 8 * ¢ . ®
® ®
6
° ° ® ¢ ®
°
4 | ® ° ° ° ° ° ° ° ® P ° ®
2 ® ® @ ® ° o ® o ® o
0 [] ¢ ® o o ®
& & &£ .\d"é & c§’o & & F & & ¢
F f \&@é“ S & S &£ &£ F T
& & < O
& &@ < &) 6&"

@ 2010 NVIDIA Corporation

Performance Comparison ,E%A

eGTX 285 ACell ©«Coreif

18
°
16 o
14 ® L "
12 o °
°
& 10
O
ol
S °
.
6 A ° ¢
A A) ®
4 & A A A
- A
2 A A A A A
0
@ &] » > Y Q N $ $ e R
oe’&, Qﬂé'é\ Qﬁ\ée %046 ,@0{\}@(00 & ®9%\ ¢ 3 \ooQ \é@@ 6*‘0) ‘6@% v
& D & (PQ & P &
TN & (4]
S W @ P\ s
P> < Q@&

© 2010 NVIDIA Corporation

Binning of Sample Points

* For simplicity, we will use 1D gridding examples

« Each sample point has
— S.X (will be represented with Bin#)
— S.value (will be omitted unless necessary)

— CULOFF distance

-

©Wen-mei W. Hwu and David Kirk/NVIDIA 19
Berkeley, January 24-25, 2011

A Binned Gather Parallelization

0O 0 0 1 X 2 X X 3 X X 4 X X

N A

/,

compute the
N grid points

e Pre-sort sample
noints Into fixed size
NINS

e Each thread reads

only the relevantinput , 1 5> 3 415 § 7
bins Shared Memory
©Wen-mei W. Hwu and David Kirk/NVIDIA 2y

Berkeley, January 24-25, 2011

A Tiled Gather Implementation

Shared Memory Shared Memory

4 5 6 7
Shared Memory

©Wen-mei W. Hwu and David Kirk/NVIDIA 21
Berkeley, January 24-25, 2011

More on Tiled Gather

 Threads cooperate to load all the relevant bins
from Global Memory to Shared Memory

« Each thread accesses relevant bins from Shared
Memory
« Uniform binning for Non-uniform distribution

— Large memory overhead for dummy cells
— Reduced benefit of tiling

— Many threads spend much time on dummy sample
points

©Wen-mei W. Hwu and David Kirk/NVIDIA 22
Berkeley, January 24-25, 2011

Compact Binning for Gather
Parallelization

* Avoid pre-allocated fixed capacity bins (multi-
dimensional array)

= Sort samples into bins of varying sizes in input
array instead

* Bins 5, 6, 8 are implicit, zero-sample

0O 1 0 0 2 3

\4

o 0 0 1 1 2 3 4 7 9

Bin 0 Binl Bin Bin3 Bin4Bin7 Bin 9

©Wen-mei W. Hwu and David Kirk/NVIDIA 23
Berkeley, January 24-25, 2011

1 4 9 7

GPU Binning - Use Scatter to
Generate Bin Capacities

o 1 0 0 2 3 1 4 9 7

Capacity of 3 2 1 1 1 1
Each bin] |

Bin0 Bin1Bin2 Bin3 Bin4 Bin 7 Bin9

Need to use atomic operations for
counting the capacity

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

24

Determine Start and End of Bins

« Use parallel scan operations on the bin capacity
array to generate an array of starting points of all
bins (CUDPP)

Beginning indiceg 08¢l a7 R ErA i i el e Ee)

©Wen-mei W. Hwu and David Kirk/NVIDIA 25
Berkeley, January 24-25, 2011

Actual Binning

 All inputs can now be placed into their bins in
parallel, using atomic operations

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

26

A Tiled Gather Implementation

Shared Memory Shared Memory

O 0 0 11 2 3 4 2 3 4 7 9

| | | i | 1 ! !
0 1 2 3 4 5 6 7
Shared Memory

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

27

Controlling Load Balance
(done during capacity generation)

e Limit the size of each bin

— When counter exceeds limit for a bin, the input
samples are placed into a “CPU” overflow bin

— CPU places excess sample points into a CPU list

— CPU does gridding on the excess sample points in
parallel with GPU

— Eventually merge

0O 1 2 3 4 7 9

GPU CPU

©Wen-mei W. Hwu and David Kirk/NVIDIA 28
Berkeley, January 24-25, 2011

Set a Limit on Bin Capacities

o 1 0 0 2 3 1 4 9 7

SVDAUEN . 1 1 1 1 0 0 1 0 1
each bin

limitedto 1 Bin0 Bin1Bin2 Bin3 Bin4 Bin 7 Bin 9

When a bin capacity reaches a preset limit, do
not further increment the capacity counter
But place the excess input into an overflow bin

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

29

Determine Start and End of Bins

« Use parallel scan operations on the bin capacity
array to generate an array of starting points of all
bins (CUDPP)

Beginning indices 08| E AR ER B SESTSE GG

©Wen-mei W. Hwu and David Kirk/NVIDIA 30
Berkeley, January 24-25, 2011

Actual Binning

 All inputs can now be placed into their bins in
parallel

01 2 3 4555 6 6 7

0O 1 2 3 4 7 9
0O 1.2 3 4 5 6 7

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

31

Note the similarity

« Compact bins — CSR
e Qverflow bins - COO

 One could use ELL or JDS type of optimization
on bins If desired

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

32

Hybrid Format

¢ ELL handles typical entries

COO handles exceptional entries

* Implemented with segmented reduction

.

LI _

1 O

© 2010 NVIDIA Corporation

-

L] UL

+

>

NVIDIA

ANY FURTHER QUESTION?

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

34

	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 7: Input Compaction
	Objective
	Sparse Data�Motivation for Compaction
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Memory Coalescing with ELL
	Slide Number 12
	Slide Number 13
	Any More Ideas?
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Binning of Sample Points
	A Binned Gather Parallelization
	A Tiled Gather Implementation
	More on Tiled Gather
	Compact Binning for Gather Parallelization
	GPU Binning - Use Scatter to Generate Bin Capacities
	Determine Start and End of Bins
	Actual Binning
	A Tiled Gather Implementation
	Controlling Load Balance�(done during capacity generation)
	Set a Limit on Bin Capacities
	Determine Start and End of Bins
	Actual Binning
	Note the similarity
	Slide Number 33
	ANY FURTHER QUESTION?

