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Objective

 To learn the key techniques for compacting input
data for reduced consumption of memory
bandwidth
— Via better utilization of on-chip memory
— As well as fewer bytes transferred to on-chip memory

e To understand the tradeoffs between input
compaction and input binning/regularization
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Sparse Data
Motivation for Compaction

= Many real-world
inputs are
sparse/non-uniform

= Signal samples,
mesh models,

transportation
networks,

communication
networks, etc.
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Sparse matrix-vector multiplication

* Compute y«— Ax+y

* where A4 is sparse and x, y are dense

* Unlike dense methods, SpMV is generally

=

* unstructured / irregular
* entirely bound by memory bandwidth
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Parallelizing CSR SpMV <X

NVIDIA
Compressed Sparse Row

* Straightforward approach

* one thread per matrix row

Thread 0 r,3 0 1 ow
Thread 1 0O 0 0 O
Thread 2 0 2 4 1
Thread 3 1 0 0 1
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CSR SpMV Kernel (CUDA) <X

NVIDIA

int row = blockDim.x * blockIdx.x + threadIdx.x;
if ( row < num rows ) {

float dot = 0;

int row start = ptr[row];

int row end = ptr[row + 1];

for (int jj = row _start; jj < row_end; jj++)

dot += data[jj] * x[indices[]j]j]]:
v[row] += dot;

Row 0 Row 2 Row 3
{ EEY EEEEs iy ]

Nonzero values data[7]

Column indices indices[7] = { O, 2, 1, 2, 3, 0, 3 };

Row pointers ptr[5] {0, 2,2, 5,71};
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Problems with simple CSR kernel

¢ Execution divergence
# varying row lengths

® Memory divergence
* minimal coalescing

Nonzero values

Column indices
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Row pointers

data[7]

indices|[7]

ptr[5]

{
{

{

Thread 0 3 0 1
Thread 1 O 0 O
Thread 2 0 2 4
Thread 3 1 0 O

#0 #1 #0 #1 #0 #2 #1
3,1, 2, 4, 1, 1, 1

0, 2, 1, 2, 3, 0, 3

0, 2, 2, 5, 7 };
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Iteration

};
};



Problems with simple CSR kernel <3

NVIDIA

* Memory divergence
* minimal coalescing
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Regularizing SpMV with ELL format <3

NVIDIA

* Storage for K nonzeros per row
* pad rows with fewer than K nonzeros

ELLPACK
* inefficient when row length varies ¢
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Thread 0
Thread 1
Thread 2
Thread 3
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Regularizing SpMV with ELL format

* Quantize each row to a fix length K

Columns

.
o 2 *

¢ Layout in column-major order
* vyields full coalescing
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Memory Coalescing with ELL

Values Columns

Thread 0

Thread 1

Thread 2
Thread 3

data 3 | * | 2 | 1| 1| |4 | 1| *]*|1

index O * 1 1 2 * 2 3 * * 3
|
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Exposing maximal parallelism rﬁ%a

* Use COO (Coordinate) format

* list row, column, and value for every non-zero entry

Nonzero values datal[7] {3,1, 2, 4, 1, 1, 1 };
Column indices cols[7] = { 0, 2, 1, 2, 3, 0, 3 };

Row indices rows[7] = { O, O, 1, 1, 1, 2, 2 };

¢ Assign one thread to each non-zero entry
* each thread computes an A[i,j]*x[j] product
* sum products with segmented reduction algorithm
* largely insensitive to row length distribution
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Hybrid Format

¢ ELL handles typical entries

# COO handles exceptional entries

* Implemented with segmented reduction

.
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Any More ldeas?

e JDS format

— Sort rows according to their number of non-zero
elements

e Can use Hybrid with JDS and and launch
multiple kernels
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Sparse formats for different matrices
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Structured Matrices <X

NVIDIA.

®#COO ©CSR (scalar) ®CSR (vector) ®DIA ©ELL
20

18

14
12

10

GFLOP/s

Laplacian 3pt Laplacian 5pt  Laplacian 7/pt  Laplacian 9pt Laplacian 27pt
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Unstructured Matrices <X

NVIDIA
®COO @oCSR (scalar) ®CSR (vector) eHYB
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Performance Comparison ,E%A

eGTX 285 ACell ©«Coreif
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Binning of Sample Points

* For simplicity, we will use 1D gridding examples

« Each sample point has
— S.X (will be represented with Bin#)
— S.value (will be omitted unless necessary)

— CULOFF distance

-
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A Binned Gather Parallelization

0O 0 0 1 X 2 X X 3 X X 4 X X

N A

/,

compute the
N grid points

e Pre-sort sample
noints Into fixed size
NINS

e Each thread reads

only the relevantinput , 1 5> 3 415 § 7
bins Shared Memory
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A Tiled Gather Implementation

Shared Memory Shared Memory

4 5 6 7
Shared Memory
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More on Tiled Gather

 Threads cooperate to load all the relevant bins
from Global Memory to Shared Memory

« Each thread accesses relevant bins from Shared
Memory
« Uniform binning for Non-uniform distribution

— Large memory overhead for dummy cells
— Reduced benefit of tiling

— Many threads spend much time on dummy sample
points
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Compact Binning for Gather
Parallelization

* Avoid pre-allocated fixed capacity bins (multi-
dimensional array)

= Sort samples into bins of varying sizes in input
array instead

* Bins 5, 6, 8 are implicit, zero-sample

0O 1 0 0 2 3

\4

o 0 0 1 1 2 3 4 7 9

Bin 0 Binl Bin Bin3 Bin4Bin7 Bin 9
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GPU Binning - Use Scatter to
Generate Bin Capacities

o 1 0 0 2 3 1 4 9 7

Capacity of 3 2 1 1 1 1
Each bin ] |

Bin0 Bin1Bin2 Bin3 Bin4 Bin 7 Bin9

Need to use atomic operations for
counting the capacity
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Determine Start and End of Bins

« Use parallel scan operations on the bin capacity
array to generate an array of starting points of all
bins (CUDPP)

Beginning indiceg 08¢l a7 R ErA i i el e Ee)
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Actual Binning

 All inputs can now be placed into their bins in
parallel, using atomic operations
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A Tiled Gather Implementation

Shared Memory Shared Memory

O 0 0 11 2 3 4 2 3 4 7 9

| | | i | 1 ! !
0 1 2 3 4 5 6 7
Shared Memory
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Controlling Load Balance
(done during capacity generation)

e Limit the size of each bin

— When counter exceeds limit for a bin, the input
samples are placed into a “CPU” overflow bin

— CPU places excess sample points into a CPU list

— CPU does gridding on the excess sample points in
parallel with GPU

— Eventually merge

0O 1 2 3 4 7 9

GPU CPU
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Set a Limit on Bin Capacities

o 1 0 0 2 3 1 4 9 7

SVDAUEN . 1 1 1 1 0 0 1 0 1
each bin

limitedto 1 Bin0 Bin1Bin2 Bin3 Bin4 Bin 7 Bin 9

When a bin capacity reaches a preset limit, do
not further increment the capacity counter
But place the excess input into an overflow bin
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Determine Start and End of Bins

« Use parallel scan operations on the bin capacity
array to generate an array of starting points of all
bins (CUDPP)

Beginning indices 08| E AR ER B SESTSE GG
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Actual Binning

 All inputs can now be placed into their bins in
parallel

01 2 3 4555 6 6 7

0O 1 2 3 4 7 9
0O 1.2 3 4 5 6 7
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Note the similarity

« Compact bins — CSR
e Qverflow bins - COO

 One could use ELL or JDS type of optimization
on bins If desired

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

32



Hybrid Format

¢ ELL handles typical entries

# COO handles exceptional entries

* Implemented with segmented reduction

.
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ANY FURTHER QUESTION?

©Wen-mei W. Hwu and David Kirk/NVIDIA
Berkeley, January 24-25, 2011

34



	Berkeley Winter School��Advanced Algorithmic Techniques for GPUs���Lecture 7: Input Compaction
	Objective
	Sparse Data�Motivation for Compaction
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Memory Coalescing with ELL
	Slide Number 12
	Slide Number 13
	Any More Ideas?
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Binning of Sample Points
	A Binned Gather Parallelization
	A Tiled Gather Implementation
	More on Tiled Gather
	Compact Binning for Gather Parallelization 
	GPU Binning - Use Scatter to Generate Bin Capacities
	Determine Start and End of Bins
	Actual Binning
	A Tiled Gather Implementation
	Controlling Load Balance�(done during capacity generation)
	Set a Limit on Bin Capacities
	Determine Start and End of Bins
	Actual Binning
	Note the similarity
	Slide Number 33
	ANY FURTHER QUESTION?

