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NERSC Overview

mms n'[ B nm—— Structure NERSC represents science needs
PIIGAL | 4000 users, 500 projects, 700 code
PLGHAS e E RS instances
| » Over 1,500 publications annually
» Time is used by university
researchers (65%), DOE Labs (25%)
‘-},‘.» and others
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Energy storage:
Catalysis for
improved
batteries and fuel

Fusion: Simulations =~ Nano devices: New g5
single molecule

ITER scale switching element

Combustion: New
algorithms (AMR) of Fusion devices at

coupled to experiments

Materials:
For solar
panels and
other
applications. Capture & Climate modeling: Work
Sequestration: EFRCs  with users on scalability of
ENEDRDRY  COffice of cloud-resolving models

ENERGY Science 3 ) w
ERKELEY AB



How and When to Move Users
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Want to avoid two paradigm disruptions on road to Exa-scale —
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System Power (MW)

Exascale is about Energy
Efficient Computing

At $1M per MW, energy costs are substantial

« 1 petaflop in 2010 will use 3 MW
« 1 exaflop in 2018 at 200 MW with “usual” scaling

« 1 exaflop in 2018 at 20 MW is target
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7~ scaling
Af/ ——————— goal
/ I T i
2005 2010 2015 2020 )\l A
rrrrrrr ‘||||



m Energy Efficiency of Computing

Worldwide IT Footprints

Emissions by sub-sector, 2020
820m tons CO, PCs, peripherals Telecoms
and printers — ~ infrastructure
and devices

v
e

57% ’ -
2007 Worldwide IT |
carbon footprint:

2% = 1.43 billion tons
CO, comparable to the
global aviation industry *

Source: The Climate Group

Expected to grow
to 4% by 2020

' centres 18%

ENERGY Office of - Total emissions: 1.43bn tonnes (0, equivalent
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Architecture Paths to Exascale

140

120 +

® Interconnect
® Memory
mFPU

100 -

80

60

40 -

Megawatts for 1 Exaflop machine

20 -

Fulll cores Manycore Opt Topology Advanced Mem

« Leading Technology Paths (Swim Lanes)

— Manycore/Embedded: Use many simpler, low power
cores from embedded space (BlueGene)

— GPU/Accelerator: Use highly specialized processors
from gaming space (NVidia Fermi, Cell)
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Challenges to Eksele

Performance Growth
1) System power is the primary constraint

2) Concurrency (1000x today)

3) Memory bandwidth and capacity are not keeping pace
4) Processor architecture is an open question

5) Programming model heroic compilers will not hide this
6) Algorithms need to minimize data movement, not flops
7) 110 bandwidth unlikely to keep pace with machine speed
8) Reliability and resiliency will be critical at this scale

9) Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally
Important across scales, e.q., 1000 1-PF machines
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Anticipating and Influencing the Future

Hardware Design

A
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Moore’s Law Continues, but Only
with Added Concurrency

0 0arallel f 6/ 10000000 -
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Intel QC Tensil-
Nehalem ica

Power 100 A
(W)

Area 240 2
(mm?)

DP 50 4
Gflops

Overall

Overall
Gain
103

102

104

Lightweight (thin) cores
improve energy efficiency
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Manycore/Embedded Approach

Tensilica Xtensa with double-precision
« 2mm? chip surface area
» 0.1 watts
 4GFLOPs

. P :
|

_ Shared L3 Cachel & | | 1 -

Intel Quad Core Nehalem
« 240mm?Z chip surface area

* 100 watts TDP )\I \
., 50 GFLOPs




The Amdahl Case for

Heterogeneity
F is fraction of time in parallel; 1-F is serial
250
F=0.999

S 200 — Assumes
o Chip with area for 256\hin cores
Q speedup for
& 150 Fat/ Thin =
s Sqrt of Area
(]
g 100 advantage
>
< 50

F=0.9

F=0.5
0
] 2 4 8 16 32 @ 128
(256 _zores) Size of Fat core in Thin Core units (1 coie)
109 AAvA~)
256 small cores 1 fat core

A Chip with up to 256 “thin” cores and “fat” core that

~uses some of the some of the thin core area S
ENERGY (S)Zfig:scc;f Heterogeneity Analysllzs by: Mark Hill, U. Wisc RLAB ,,,|




Technology Investment Trends

1990s: Computing R&D dominated by desktop/COTS
— Learned to use COTS technology for HPC

2010s: Computing R&D moving to consumer electronics
— Need to leverage embedded/consumer technology for HPC

Market in Japan(B$) From Tsugio Makimoto: 1ISC2006
2.0
1.5
1.0
0.5

2001 2002 2003 2004 2005
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Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core
* Memory density is doubling every three years; processor logic is every two
 Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Cost of Computation vs. Memory

Evolution of memory density 100
10 . Source: David Turek, IBM
10000 - ¢ 1Mb
= 4Mb
POias 1
= 1000 o 2Xi3yrs 16Mb
= ’
2 10 e 4 el 0.1 m— N
= A x 128Mb ' .
S 2By o 256Mb
= - :
o S : IBM 0.01
L ouree 0512Mb =
1 4 T T T T T A1Gb 0.001
- 2 2 3 2
1985 1990 1995 2000 2005 2010 2015 2Gb 2, 2, 2 >,
Year mass production starts 4Gb B Dollars/Mbyte A Dollars’/MFLOP

The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it

Question: Can you double concurrency without doubling memory?

~

frreeerer

s, : A
v_..o““‘ﬁ?‘ U.S. DEPARTMENT OF Ofﬂce of m

& ENERGY  science 14




10000

1000

100

PicoJoules

10

e“"‘"""&,‘ U.S. DEPARTMENT OF

Office of

4% ENERGY  scionce

Where does the Power Go?

Intranode/SMP Intranode/MPI
Communication Communication

On-chip /CM
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Energy Efficienc

(Includes Cel

y of Applications

nd GPU)

1.7x speedup versus optimized Nehalem (C2050 w/ECC) |
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V. Volkov, S. Williams ,
J. Carter, L. Oliker.

D. Patterson, J. Shalf,
K. Yelick, BDK11 book
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Cache-based

MFlop/S/Watt
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Power Efficiency
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Hl System Power

Efficiency
. Chip Power

Efficiency

Local store-based

B Gainestown
B Barcelona
O Victoria Falls

B Cell Blade
B GTX280
B GTX280-Host
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The Roofline Performance Model

Generic Machine

peak DP

mul /41 hél}%ce
W//dSIMD

w/out ILP

0.5

e @ EEEEEEEEEEEEEE

iy, Y, 1 2 4 8 16

office oactual flop:byte ratio
Science

< The flat room is
determined by
arithmetic peak and
Instruction mix

< The sloped part of the
roof is determined by
peak DRAM bandwidth
(STREAM)

< X-axis is the
computational intensity
of your computation
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Relative Performance
Expectations

Fermi & Nehalem Roofline
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Relative Performance Across
Kernels

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

...............
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m What Heterogeneity Means to Me

« Case for heterogeneity

— Many small cores are needed for energy efficiency and

power density; could have their own PC or use a wide SIMD

— Need one fat core (at least) for running the OS

* Local store, explicitly managed memory hierarchy

— More efficient (get only what you need) and simpler to

implement in hardware

Co-Processor interface between CPU and
Accelerator

Market: GPUs are separate chips for specific domains
Control: Why are the minority CPUs in charge?
Communication: The bus is a significant bottleneck.

Do we really have to do this? Isn’t parallel programming
hard enough

A
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The Future of Software Design
Programming Models

Office of
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m Open Problems in Software

* Goal: performance through parallelism
* Locality is equally important
* Heroic compilers unlikely solution:

* Need better programming models that:
— Abstract machine variations
— Provide for control over what is important

« Data movement (“communication”)
dominates running time and power

Office of
Science 22




Partitioned Global Address
Space Languages

Global address space: thread may directly read/write
remote data
Partitioned: data is designated as local or global

g 5 .
§ X: 1// x:5 | x: 7
e y: o y: y: 0 \
7 N7/ : !
o
: 1:// 1 ) coeo I /
S /
e g: g g /
G

PO p1 pn

Affinity control for shared and distributed memory
No less scalable than message passing
Permits sharing, unlike message passing
One-sided communication: never say “receive”
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Two-sided vs One-sided

Communication
two-sided message host
: CPU
message id data payload —
: network
one-sided put message T
address data payload —*
memory

« Two-sided message passing (e.g., MPI) requires
matching a send with a receive to identify memory
address to put data

— Wildly popular in HPC, but cumbersome in some applications
— Couples data transfer with synchronization

 Using global address space decouples synchronization
— Pay for what you need!

— Note: Global Addressing # Cache Coherent Shared memory

~
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One-Sided Communication Avoids
Unnecessary Overheads

Comparison of MPI to GASNet (LBNL/UCB one-sided
communication layer)

Roundtrip Latency (usec)

8'bvt;$°undt"p Laen Flood Bandwidth for 4KB messages
5 ' 100% mMPI
223
B \IP ping-pong 90% - 763 B GASNet
714
L | MOASNet puttsync -
X 70% 4
©
[}
15 Q 60%
3
I 50%
whud
c
104 8 0% -
S
[
o 30%
5 20%
10%
0 0% -
Elan3 Alpha Eland/IA64 Myrlnet 86 IBIGS IB/Opteron SP/Fed Elan3/Alpha Eland/IA64 Myrinet/x86 [BIG5 [B/Opteron SPFFed

~
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3D FFT on BlueGene/P

T T T T
| = = = Upper Bound : :
= UPC Slabs : : P
— MPISlabs | o o o o2 ]
— MPI Packed Slabs : : - s :

GFlops

| |
512 1024 2048 4096 8192 16384
Core Count (Problem Size for All Core Counts: 2048 x 1024 x 1024)

U:S:DEPARTMENT OF Office of ~ Joint work with Rajesh Nishtala, Dan Bonachea,
ENERGY Science Paul Hargrove,and rest of UPC group
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Avoid Synchronization

Computations as DAGs

View parallel executions as the directed acyclic graph of the
computation

Office of Slide source: Jack Dongarra rfrr}| ""I
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Parallel LU Factorization

Blocks 2D
block-cyclic
distributed

Completed part of U

Panel factorizations
involve communication
for pivoting

Matrix-

o
Y o\
5 /8]
"B/\/

A

matrix
multiplication

- / used here.

Can be coalesced

7 0 ued paje|dwo)

Trailing matrix
to be updated

Panel being factored
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Event Driven Execution of LU

* Ordering needs to be imposed on the schedule

« Critical operation: Panel Factorization
— need to satisfy its dependencies first
— perform trailing matrix updates with low block numbers first
— “memory constrained” lookahead

« General issue: dynamic scheduling in partitioned memory
— Can deadlock memory allocator!
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DAG Scheduling Outperforms
Bulk-Synchronous Style

PLASMA on shared memory  UPC on partitioned memory

Cholesky —— octa-socket, dual-core Opteron [ UPC
) x : ; ' ; = .
——PLASMA & ACML BLAS vs
== ACML Cholesky
B ScaLAPACK
——LAPACK & ACML BLAS
50 : I 2 1 , 30 m ScalAPACK
- : ; m UPC
£ 40f
= 60
O 30r 0
=3
2 40
20} [
(L-]
10- 20 4
1900 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 -

problem size

UPC LU factorization code adds cooperative (non-

preemptive) threads for latency hiding
— New problem in partitioned memory: allocator deadlock
— Can run on of memory locally due tounlucky execution order

ENERGY Office of PLASMA by Dongarra et al; UPC LU joint with rr/n>| .ﬁ|
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Hierarchical PGAS Memory Model

« A global address space for hierarchical machines may have multiple
kinds of pointers

« These can be encode by programmers in type system or hidden,
e.g., all global or only local/global

« This partitioning is about pointer span, not control / parallelism

pan 1

(core local)

pan 2

(chip local)
evel 3

(node local)

avel 4
(global world)

~
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m Autotuning: Write Code Generators

« Autotuners are code generators plus search
algorithms to find best code

« Avoids compiler problems of dependence analysis
and approximate performance models

< Functional portability
from C

+ Performance portability
from search at install time

BLAS

Library

@< U.S. DEPAR T Q . . . .
ENEREAP <'Basic Linear Algebra Subroutine:

Science
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701

Performance of Autotuned Matrix Multiply

/~ L~
- VW

HP 712/ 80i

| A

\

Vendor DGEMM

"~ FORTRAN, 3 nested loops

50

100 150 200 250

Square matrix sizes =
. _ \
matrix multiply, etc. /\| ...|




Autotuners for Input-
Dependence Optimizations

STRIN 0 Xeon X5550
TR 9 (auto-tuned Pthreads)
Protein FEM / FEM/ m 8 ]
spheres Cantilever ~ 7 — _ O Auto-
fw'%%xyi';f" j% g S s e e tuned
o =2 w4 -
Accelerator Circuit webbase u 3
. 2 _
« Sparse Matrix 1 ¢

— Significant index meta data 0
— Irregular memory accesses
— Memory bound

* Autotuning
— Tune over data structures (add 0s)
— Delayed tuning decisions until runtime

— Still use significant install-time tuning (dense matrix in
sparse format) with online specialization based on matrix _

&S = DE‘E‘ﬁ%%%m Im, Vuduc, Williams, and Jain :f—f>|
EN Science

Dense
Protein
Spheres
Cantilever
WindTunnel
Harbor
QCD

Ship

LP

Webbase ||

Economics
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Epidemiology L1 1

{
Circuit |t

Accelerator
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Recent Past Autotuners:
Sparse Matrices

« OSKI: Optimized Sparse Kernel Interface
« Optimized for: size, machine, and matrix structure
* Functional portability from C (except for Cell/GPUs)

< Performance portability 8 Performance on Median Matrix of Suite
from install time search and autotuned (1A specf

7 | | auto-tuned (portable C)

model evaluation at runtime ‘ reference C code

w

< Later tuning, less opaque
interface

GFLOP/s
(&%) B

Xeon E5345  Opteron 2214  Opteron 2356 T2+ 75140  QS20 Cell Blade
(Clovertown)  (SantaRosa)  (Barcelona)  (Victoria Falls)

u.

~
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* Ruby class

encapsulates SG
pattern

— body of anonymous
lambda specifies filter
function

- Code generator
produces OpenMP

— ~1000-2000x faster than
Ruby

— Minimal per-call runtime

overhead Joint with Shoaib Kamil,
Armando Fox, John Shalf.

U.S. DEPARTMENT OF Office of
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Improving Support for Writing

Autotuners

class LaplacianKernel < Kernel
def kernel(in_grid, out_grid)
in_grid.each_interior do |point|
in_grid.neighbors(point,1).each
do | x|
out_grid[point] += 0.2*x.val
end
end
end

VALUE kern_par(int argc, VALUE* argv, VALUE
self) {

unpack_arrays into in_grid and out_grid;

#pragma omp parallel for default(shared)
private (t_6,t_7,t_8)
for (t_8=1; t_8<256-1; t_8++) {
for (t_7=1; t_7<256-1; t_7++) {
for (t_6=1; t_6<256-1; t_6++) {
out_grid[center] = (out_grid[center]
+(0.2*%in_grid[INDEX(t_6-1,t_7,t_8)1));

6ﬁ£_grid[center] = (out_grid[center]
+(0.2*%in_grid[INDEX(t_6,t_7,t_8+1)]1));
;11}

return Qtrue;}




Algorithms to Optimize for
Communication
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% Choose Scalable Algorithms

*Algorithmic gains in last decade have
far OUtStripped Moore,s Law Problem Solution Time -- Combustion

—Adaptive meshes ; T r 1 w ] x l

TTT

rather than uniform
—Sparse matrices
rather than dense
—Reformulation of
problem back to basics

— Non-Adaptive, Compressible
e Cray XT4
— Cray XT4 ideal scaling

i
|

0.01 |- -

Normalize Problem Solution Time

*Two kinds of scalability = | :
—In problem side (n) S S S—

64 256 1024 4096

—In maChine Size (p) Number of Processors

Example of canonical “Poisson” problem on n points:
—Dense LU: most general, but O(n3) flops on O(n?) data
—Multigrid: fastest/smallest, O(n) flops on O(n) data

~
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L L5 Communication-Avoiding
Algorithms

Consider Sparse Iterative Methods
* Nearest neighbor communication on a mesh
 Dominated by time to read matrix (edges) from DRAM

« And (small) communication and global
synchronization events at each step

Can we lower data movement costs?
 Take k steps “at once” with one matrix read
from DRAM and one communication phase

- Parallel implementation
O(log p) messages vs. O(k log p)

— Serial implementation
O(1) moves of data moves vs. O(k)

Joint work with Jim Demmel, Mark

@R vsoeasmentor | ofiice flOoemman, Marghoob Mohiyuddin
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Bigger Kernel (A*x) Runs at Faster
Speed than Slmpler (Ax)
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Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.

Log10 of 2-norm relative residual
|
w

Nonrestarted GMRES

v Restarted GMRES(192)
O Monomial-GMRES(24 8)
A Newton-GMRES(24 38)

o 000 a o
0 od o 0 0%
Q oGO

. A different polynomial basis does converge

300 400 S00 600 700 800 900 1000
Inner iteration number




Communication-Avoiding
Krylov Method (GMRES)

Performance on 8 core Clovertown
Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60

4.5 .
— Matrix powers
F (| RN RN RN RIOTCNI; W ——— R . kernel i
TSQR
PORS 1| T SUIINUIEI AT S S——" . Block Gram- i

Schmidt

—/
]
Small dense
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—1
1

w
o
T

Sparse matrix-
vector product

Modified
Gram-Schmidt |

g
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=
v

Relative runtime, for best (k,t)

with floor(restart length / k)
N
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Communication-Avoiding Dense
Linear Algebra

Well known why BLAS3 beats BLAS1/2: Minimizes
communication = data movement

— Attains lower bound Q (n3/ cache_size'? ) words moved in
sequential case; parallel case analogous

Same lower bound applies to all linear algebra
— BLAS, LU, Cholesky, QR, eig, svd, compositions...
— Sequential or paraliel
— Dense or sparse (n® = #flops in lower bound)

Conventional algs (Sca/LAPACK) do much more
We have new algorithms that meet lower bounds

— Good speed ups in prototypes (including on cloud)
— Lots more algorithms, implementations to develop

Office of freeeee ‘Iﬁ
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General Lessons

Early intervention with hardware designs
Optimize for what is important:

energy - data movement
Anticipating and changing the future

— Influence hardware designs

— Use languages that reflect abstract machine
— Write code generators / autotuners

— Redesign algorithms to avoid communication

These problems are essential for computing
performance in general
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Questions?
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