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NERSC Overview 
NERSC represents science needs 
•  4000 users, 500 projects, 700 code 

instances 
• Over 1,500 publications annually 
•  Time is used by university 

researchers (65%), DOE Labs (25%) 
and others 
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Petaflop Hopper system 
•  High application performance 
•  Nodes: 2 12-core AMD processors 
•  Low latency Gemini interconnect 



Energy Science at NERSC 

Fusion: Simulations 
of Fusion devices at 
ITER scale 

Combustion: New 
algorithms (AMR) 
coupled to experiments 

Energy storage: 
Catalysis for 
improved 
batteries and fuel 
cells 

Capture & 
Sequestration: EFRCs 

Materials: 
For solar 
panels and 
other 
applications. Climate modeling: Work 

with users on scalability of 
cloud-resolving models 

Nano devices: New 
single molecule 
switching element 
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How and When to Move Users 
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Franklin (N5) 
19 TF Sustained 
101 TF Peak 

Franklin (N5) +QC 
36 TF Sustained 
352 TF Peak 

Hopper (N6) 
>1 PF Peak 
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Want to avoid two paradigm disruptions on road to Exa-scale 

Flat MPI 
 MPI+OpenMP 

 MPI+X?? 

 MPI+CUDA? 



Exascale is about Energy 
Efficient Computing 

goal 

usual 
scaling 

2005                                      2010                                     2015                                      2020 
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At $1M per MW, energy costs are substantial 
•  1 petaflop in 2010 will use 3 MW 
•  1 exaflop in 2018 at 200 MW with “usual” scaling 
•  1 exaflop in 2018 at 20 MW is target 



Energy Efficiency of Computing 
is a Global Problem 
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820m tons CO2 

360m tons CO2 

260m tons CO2 

2007 Worldwide IT 
carbon footprint: 
2% = 1.43 billion tons 
CO2,comparable to the 
global aviation industry 

Expected to grow  
to 4% by 2020 

Cloud computing 

Worldwide IT Footprints 



Architecture Paths to Exascale 

•  Leading Technology Paths (Swim Lanes) 
–  Multicore: Replicate traditional cores (x86 and Power7) 
–  Manycore/Embedded: Use many simpler, low power 

cores from embedded space (BlueGene) 
–  GPU/Accelerator: Use highly specialized processors 

from gaming space (NVidia Fermi, Cell) 
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Challenges to Exascale 

1)  System power is the primary constraint 
2)  Concurrency (1000x today) 
3)  Memory bandwidth and capacity are not keeping pace 
4)  Processor architecture is an open question 
5)  Programming model  heroic compilers will not hide this 
6)  Algorithms need to minimize data movement, not flops 
7)  I/O bandwidth unlikely to keep pace with machine speed  
8)  Reliability and resiliency will be critical at this scale 
9)  Bisection bandwidth limited by cost and energy 

Unlike the last 20 years most of these (1-7) are equally 
important across scales, e.g., 1000 1-PF machines 

Performance Growth 



Anticipating and Influencing the Future 

Hardware Design 
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Moore’s Law Continues, but Only 
with Added Concurrency 

Can you double concurrency every 2 years? 

CM-5 

Red 
Storm 

1000x performance increase was 
40x clock speed x 25x concurrency 
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Manycore/Embedded Approach 
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Intel QC 
Nehalem 

Tensil-
ica 

Overall 
Gain 

Power 
(W) 

100 .1 103 

Area 
(mm2) 

240 2 102 

DP 
Gflops 

50 4 .1 

Overall 104 

Lightweight (thin) cores 
improve energy efficiency 

Tensilica Xtensa with double-precision 
•  2mm2 chip surface area 
•  0.1 watts 
•  4GFLOPs 

Intel Quad Core Nehalem 
•  240mm2 chip surface area 
•  100 watts TDP 
•  50 GFLOPs 
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The Amdahl Case for 
Heterogeneity 
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Size	
  of	
  Fat	
  core	
  in	
  Thin	
  Core	
  units	
  

F=0.999	
  

F=0.99	
  

F=0.975	
  

F=0.9	
  

F=0.5	
  

(256 cores) 
(193 cores) 

(1 core) 

F is fraction of time in parallel; 1-F is serial 

Chip with area for 256 thin cores  

A Chip with up to 256 “thin” cores and “fat” core that 
uses some of the some of the thin core area 

256 small cores 1 fat core 

Assumes 
speedup for 
Fat / Thin = 
Sqrt of Area 
advantage 

Heterogeneity Analysis by: Mark Hill, U. Wisc 



Technology Investment Trends 

1990s: Computing R&D dominated by desktop/COTS 
–  Learned to use COTS technology for HPC 

2010s: Computing R&D moving to consumer electronics 
– Need to leverage embedded/consumer technology for HPC 

From Tsugio Makimoto: ISC2006 



Memory is Not Keeping Pace 

Technology trends against a constant or increasing memory per core 
•  Memory density is doubling every three years; processor logic is every two 
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 
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Question: Can you double concurrency without doubling memory? 

Source: IBM 
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Where does the Power Go? 
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Intranode/MPI 
Communication 

On-chip  / CMP 
communication 

Intranode/SMP 
Communication 



Energy Efficiency of Applications 
(Includes Cell and GPU) 

Gainestown 
Barcelona 
Victoria Falls 

Cell Blade 
GTX280 

Cache-based 

GTX280-Host 

Local store-based 

K. Datta, M. Murphy,  
V. Volkov, S. Williams ,  
 J. Carter, L. Oliker. 
 D. Patterson, J. Shalf, 
 K. Yelick, BDK11 book 
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The Roofline Performance Model 
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Generic Machine 
  The flat room is 

determined by 
arithmetic peak and 
instruction mix 

  The sloped part of the 
roof is determined by 
peak DRAM bandwidth 
(STREAM) 

  X-axis is the 
computational intensity 
of your computation 
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What Heterogeneity Means to Me 

•  Case for heterogeneity 
–  Many small cores are needed for energy efficiency and 

power density; could have their own PC or use a wide SIMD 
–  Need one fat core (at least) for running the OS 

•  Local store, explicitly managed memory hierarchy 
–  More efficient (get only what you need) and simpler to 

implement in hardware 
•  Co-Processor interface between CPU and 

Accelerator 
–  Market: GPUs are separate chips for specific domains 
–  Control: Why are the minority CPUs in charge?   
–  Communication: The bus is a significant bottleneck. 
–  Do we really have to do this? Isn’t parallel programming 

hard enough 



The Future of Software Design 
Programming Models 
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Open Problems in Software 

•  Goal: performance through parallelism 
•  Locality is equally important 
•  Heroic compilers unlikely solution: 
•  Need better programming models that: 

– Abstract machine variations 
– Provide for control over what is important 

•  Data movement (“communication”) 
dominates running time and power 
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Partitioned Global Address 
Space Languages 

Global address space: thread may directly read/write 
remote data  

Partitioned: data is designated as local or global 
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y:  

l:  l:  l:  

g:  g:  g:  

x: 5 
y:  

x: 7 
y: 0 

p0" p1" pn"
•  Affinity control for shared and distributed memory 
•  No less scalable than message passing 
•  Permits sharing, unlike message passing 
•  One-sided communication: never say “receive”  



Two-sided vs One-sided 
Communication 

•  Two-sided message passing (e.g., MPI) requires 
matching a send with a receive to identify memory 
address to put data 
–  Wildly popular in HPC, but cumbersome in some applications 
–  Couples data transfer with synchronization 

•  Using global address space decouples synchronization 
–  Pay for what you need!   
–  Note: Global Addressing ≠ Cache Coherent Shared memory 

address 

message id 

data payload 

data payload 
one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 

Joint work with Dan Bonachea, Paul Hargrove, 
Rajesh Nishtala and rest of UPC group	





One-Sided Communication Avoids 
Unnecessary Overheads 

Comparison of MPI to GASNet (LBNL/UCB one-sided 
communication layer) 

Joint work with Berkeley UPC Group	





3D FFT on BlueGene/P 

Joint work with Rajesh Nishtala, Dan Bonachea, 
Paul Hargrove,and  rest of UPC group	
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Avoid Synchronization 

Computations as DAGs 
View parallel executions as the directed acyclic graph of the 
computation  

Slide source: Jack Dongarra	





Parallel LU Factorization 

Blocks 2D 
block-cyclic 
distributed 

Panel factorizations 
involve communication 
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part of L 

A(i,j)‏ A(i,k)  ‏

A(j,i)‏ A(j,k)  ‏

Trailing matrix 
to be updated 

Panel being factored 

Completed part of U 



Event Driven Execution of LU 

•  Ordering needs to be imposed on the schedule 
•  Critical operation: Panel Factorization 

–  need to satisfy its dependencies first 
–  perform trailing matrix updates with low block numbers first 
–  “memory constrained” lookahead 

•  General issue: dynamic scheduling in partitioned memory 
–  Can deadlock memory allocator! 

some edges omitted 
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        DAG Scheduling Outperforms 
Bulk-Synchronous Style 

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding 
–  New problem in partitioned memory: allocator deadlock 
–  Can run on of memory locally due tounlucky execution order 

PLASMA on shared memory UPC on partitioned memory 

PLASMA by Dongarra et al; UPC LU joint with 
Parray Husbands	





Hierarchical PGAS Memory Model 

•  A global address space for hierarchical machines may have multiple 
kinds of pointers 

•  These can be encode by programmers in type system or hidden, 
e.g., all global or only local/global 

•  This partitioning is about pointer span, not control / parallelism 

B 

span 1 
(core local) 

span 2 
(chip local) 

level 3 
(node local) 

level 4 
(global world) 
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Autotuning: Write Code Generators 

•  Autotuners are code generators plus search 
algorithms to find best code 

•  Avoids compiler problems of dependence analysis 
and approximate performance models 

  Functional portability 
from C 

  Performance portability 
from search at install time 

Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Multiply 

specialized 
to n,m 

BLAS = Basic Linear Algebra Subroutine: matrix multiply, etc. 

BLAS 
Library 

Atlas 
Autotuner: 
code generator 
+search 

Performance of Autotuned Matrix Multiply 
HP 712 / 80i 



Autotuners for Input-
Dependence Optimizations 

•  Sparse Matrix 
–  Significant index meta data 
–  Irregular memory accesses 
–  Memory bound 

•  Autotuning  
–  Tune over data structures (add 0s) 
–  Delayed tuning decisions until runtime  
–  Still use significant install-time tuning (dense matrix in 

sparse format) with online specialization based on matrix 
structure 

Protein FEM / 
Spheres 

FEM / 
Cantilever 

FEM / 
Accelerator Circuit webbase 
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Xeon X5550 
(auto-tuned Pthreads) 

Auto-
tuned 

See theses from Im, Vuduc, Williams, and Jain  



Recent Past Autotuners: 
Sparse Matrices 

•  OSKI: Optimized Sparse Kernel Interface 
•  Optimized for: size, machine, and matrix structure 
•  Functional portability from C (except for Cell/GPUs) 
  Performance portability 

from install time search and 
model evaluation at runtime 

  Later tuning, less opaque 
interface 

Matrix 
Vector Mul 
specialized 

to n,m 

Triangular 
Solve 

specialized 
to n,m 

Matrix 
Vector Mul 
specialized 

to n,m, 
structure 

See theses from Im, Vuduc, Williams, and Jain  

OSKI 
Library 

OSKI 
Autotuner: 
code generator 
+search 

Performance on Median Matrix of Suite 



Improving Support for Writing 
Autotuners"

•  Ruby class 
encapsulates SG 
pattern"
–  body of anonymous 

lambda specifies filter 
function"

•  Code generator 
produces OpenMP "
–   ~1000-2000x faster than 

Ruby"
–  Minimal per-call runtime 

overhead"

class LaplacianKernel < Kernel 
 def kernel(in_grid, out_grid) 
  in_grid.each_interior do |point| 
   in_grid.neighbors(point,1).each  
      do |x| 
     out_grid[point] += 0.2*x.val 
   end 
 end 
end 

VALUE kern_par(int argc, VALUE* argv, VALUE 
self) { 
unpack_arrays into in_grid and out_grid; 

#pragma omp parallel for default(shared)  
private (t_6,t_7,t_8) 
for (t_8=1; t_8<256-1; t_8++) { 
 for (t_7=1; t_7<256-1; t_7++) { 
  for (t_6=1; t_6<256-1; t_6++) { 
   int center = INDEX(t_6,t_7,t_8); 
   out_grid[center] = (out_grid[center] 
      +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)])); 
   ... 
   out_grid[center] = (out_grid[center] 
      +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)])); 
;}}} 
return Qtrue;} 

Joint with Shoaib Kamil, 
Armando Fox, John Shalf. 



Algorithms to Optimize for 
Communication 
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Choose Scalable Algorithms 

• Algorithmic gains in last decade have                                                             
far outstripped Moore’s Law 

– Adaptive meshes 
    rather than uniform 
– Sparse matrices  
   rather than dense 
– Reformulation of  
  problem back to basics 

• Two kinds of scalability 
– In problem side (n) 
– In machine size (p) 

• Example of canonical “Poisson” problem on n points: 
– Dense LU: most general, but O(n3) flops on O(n2) data 
– Multigrid: fastest/smallest, O(n) flops on O(n) data 

Performance results: John Bell et al	





 Communication-Avoiding  
Algorithms 

Consider Sparse Iterative Methods 
•  Nearest neighbor communication on a mesh 
•  Dominated by time to read matrix (edges) from DRAM 
•  And (small) communication and global 

synchronization events at each step 
Can we lower data movement costs? 
•  Take k steps “at once” with one matrix read  
     from DRAM and one communication phase 
–  Parallel implementation 

          O(log p) messages vs.  O(k log p)  
–  Serial implementation 

          O(1) moves of data  moves vs. O(k) 

Joint work with Jim Demmel, Mark 
Hoemman, Marghoob Mohiyuddin 
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Bigger Kernel (Akx) Runs at Faster 
Speed than Simpler (Ax)    

Speedups on Intel Clovertown (8 core) 

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick  



“Monomial”	
  basis	
  [Ax,…,Akx]	
  	
  	
  
fails	
  to	
  converge	
  

	
  A	
  different	
  polynomial	
  basis	
  does	
  converge	
  



Communication-Avoiding  
Krylov Method (GMRES) 

Performance on 8 core Clovertown 



Communication-Avoiding Dense 
Linear Algebra 

•  Well known why BLAS3 beats BLAS1/2: Minimizes 
communication = data movement 
–  Attains lower bound Ω (n3 / cache_size1/2 ) words moved in 

sequential case; parallel case analogous 
•  Same lower bound applies to all linear algebra 

–  BLAS, LU, Cholesky, QR, eig, svd, compositions…  
–  Sequential or parallel 
–  Dense or sparse (n3 ⇒ #flops in lower bound) 

•  Conventional algs (Sca/LAPACK) do much more 
•  We have new algorithms that meet lower bounds 

–  Good speed ups in prototypes (including on cloud) 
–  Lots more algorithms, implementations to develop 
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General Lessons 

•  Early intervention with hardware designs 
•  Optimize for what is important:  
           energy  data movement  
•  Anticipating and changing the future 

–  Influence hardware designs 
–  Use languages that reflect abstract machine 
–  Write code generators / autotuners  
–  Redesign algorithms to avoid communication 

•  These problems are essential for computing 
performance in general 
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Questions? 
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