
Exascale Computing:
More and Moore?

Kathy Yelick
Associate Laboratory Director and NERSC Director

Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

NERSC Overview
NERSC represents science needs
•  4000 users, 500 projects, 700 code

instances
• Over 1,500 publications annually
•  Time is used by university

researchers (65%), DOE Labs (25%)
and others

2	

Petaflop Hopper system
•  High application performance
•  Nodes: 2 12-core AMD processors
•  Low latency Gemini interconnect

Energy Science at NERSC

Fusion: Simulations
of Fusion devices at
ITER scale

Combustion: New
algorithms (AMR)
coupled to experiments

Energy storage:
Catalysis for
improved
batteries and fuel
cells

Capture &
Sequestration: EFRCs

Materials:
For solar
panels and
other
applications. Climate modeling: Work

with users on scalability of
cloud-resolving models

Nano devices: New
single molecule
switching element

3

How and When to Move Users

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Franklin (N5)
19 TF Sustained
101 TF Peak

Franklin (N5) +QC
36 TF Sustained
352 TF Peak

Hopper (N6)
>1 PF Peak

10 PF Peak

100 PF Peak

1 EF Peak

P
ea

k
Te

ra
flo

p/
s

Want to avoid two paradigm disruptions on road to Exa-scale

Flat MPI
 MPI+OpenMP

 MPI+X??

 MPI+CUDA?

Exascale is about Energy
Efficient Computing

goal

usual
scaling

2005 2010 2015 2020

5

At $1M per MW, energy costs are substantial
•  1 petaflop in 2010 will use 3 MW
•  1 exaflop in 2018 at 200 MW with “usual” scaling
•  1 exaflop in 2018 at 20 MW is target

Energy Efficiency of Computing
is a Global Problem

6

820m tons CO2

360m tons CO2

260m tons CO2

2007 Worldwide IT
carbon footprint:
2% = 1.43 billion tons
CO2,comparable to the
global aviation industry

Expected to grow
to 4% by 2020

Cloud computing

Worldwide IT Footprints

Architecture Paths to Exascale

•  Leading Technology Paths (Swim Lanes)
–  Multicore: Replicate traditional cores (x86 and Power7)
–  Manycore/Embedded: Use many simpler, low power

cores from embedded space (BlueGene)
–  GPU/Accelerator: Use highly specialized processors

from gaming space (NVidia Fermi, Cell)

7

0

20

40

60

80

100

120

140

Fulll cores Manycore Opt Topology Advanced Mem

M
eg

aw
at

ts
 fo

r 1
 E

xa
flo

p
m

ac
hi

ne

Interconnect
Memory
FPU

Challenges to Exascale

1)  System power is the primary constraint
2)  Concurrency (1000x today)
3)  Memory bandwidth and capacity are not keeping pace
4)  Processor architecture is an open question
5)  Programming model heroic compilers will not hide this
6)  Algorithms need to minimize data movement, not flops
7)  I/O bandwidth unlikely to keep pace with machine speed
8)  Reliability and resiliency will be critical at this scale
9)  Bisection bandwidth limited by cost and energy

Unlike the last 20 years most of these (1-7) are equally
important across scales, e.g., 1000 1-PF machines

Performance Growth

Anticipating and Influencing the Future

Hardware Design

9 9

Moore’s Law Continues, but Only
with Added Concurrency

Can you double concurrency every 2 years?

CM-5

Red
Storm

1000x performance increase was
40x clock speed x 25x concurrency

0

1

10

100

1000

10000

100000

1000000

10000000

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (Thousands)
Frequency (MHz)
Power (W)
Cores

Manycore/Embedded Approach

11

Intel QC
Nehalem

Tensil-
ica

Overall
Gain

Power
(W)

100 .1 103

Area
(mm2)

240 2 102

DP
Gflops

50 4 .1

Overall 104

Lightweight (thin) cores
improve energy efficiency

Tensilica Xtensa with double-precision
•  2mm2 chip surface area
•  0.1 watts
•  4GFLOPs

Intel Quad Core Nehalem
•  240mm2 chip surface area
•  100 watts TDP
•  50 GFLOPs

12 2/2/11

The Amdahl Case for
Heterogeneity

0	

50	

100	

150	

200	

250	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	

A
sy
m
m
et
ri
c	

Sp
ee
du

p	

Size	
 of	
 Fat	
 core	
 in	
 Thin	
 Core	
 units	

F=0.999	

F=0.99	

F=0.975	

F=0.9	

F=0.5	

(256 cores)
(193 cores)

(1 core)

F is fraction of time in parallel; 1-F is serial

Chip with area for 256 thin cores

A Chip with up to 256 “thin” cores and “fat” core that
uses some of the some of the thin core area

256 small cores 1 fat core

Assumes
speedup for
Fat / Thin =
Sqrt of Area
advantage

Heterogeneity Analysis by: Mark Hill, U. Wisc

Technology Investment Trends

1990s: Computing R&D dominated by desktop/COTS
–  Learned to use COTS technology for HPC

2010s: Computing R&D moving to consumer electronics
– Need to leverage embedded/consumer technology for HPC

From Tsugio Makimoto: ISC2006

Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core
•  Memory density is doubling every three years; processor logic is every two
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

14

Question: Can you double concurrency without doubling memory?

Source: IBM

14

Where does the Power Go?

1

10

100

1000

10000

Pi
co

Jo
ul

es

now

2018

Intranode/MPI
Communication

On-chip / CMP
communication

Intranode/SMP
Communication

Energy Efficiency of Applications
(Includes Cell and GPU)

Gainestown
Barcelona
Victoria Falls

Cell Blade
GTX280

Cache-based

GTX280-Host

Local store-based

K. Datta, M. Murphy,
V. Volkov, S. Williams ,
 J. Carter, L. Oliker.
 D. Patterson, J. Shalf,
 K. Yelick, BDK11 book

P
ow

er
 E

ffi
ci

en
cy

P
er

fo
rm

an
ce

The Roofline Performance Model

peak DP	

mul / add imbalance	

w/out SIMD	

w/out ILP	

0.5	

1.0	

1/8	

actual flop:byte ratio	

at
ta

in
ab

le
 G

flo
p/

s	

2.0	

4.0	

8.0	

16.0	

32.0	

64.0	

128.0	

256.0	

1/4	

 1/2	

 1	

 2	

 4	

 8	

 16	

Generic Machine
  The flat room is

determined by
arithmetic peak and
instruction mix

  The sloped part of the
roof is determined by
peak DRAM bandwidth
(STREAM)

  X-axis is the
computational intensity
of your computation

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

double-precision peak

double-precision peak

Arithmetic Intensity

A
tta

in
ab

le
 G

flo
p/

s

2.2x Measured BW

 & Roofline

Relative Performance
Expectations

1.7x 7-point Stencil

6.7x peak

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

Relative Performance Across
Kernels

What Heterogeneity Means to Me

•  Case for heterogeneity
–  Many small cores are needed for energy efficiency and

power density; could have their own PC or use a wide SIMD
–  Need one fat core (at least) for running the OS

•  Local store, explicitly managed memory hierarchy
–  More efficient (get only what you need) and simpler to

implement in hardware
•  Co-Processor interface between CPU and

Accelerator
–  Market: GPUs are separate chips for specific domains
–  Control: Why are the minority CPUs in charge?
–  Communication: The bus is a significant bottleneck.
–  Do we really have to do this? Isn’t parallel programming

hard enough

The Future of Software Design
Programming Models

21

Open Problems in Software

•  Goal: performance through parallelism
•  Locality is equally important
•  Heroic compilers unlikely solution:
•  Need better programming models that:

– Abstract machine variations
– Provide for control over what is important

•  Data movement (“communication”)
dominates running time and power

22

Partitioned Global Address
Space Languages

Global address space: thread may directly read/write
remote data

Partitioned: data is designated as local or global

G
lo

ba
l a

dd
re

ss
 s

pa
ce
"

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"
•  Affinity control for shared and distributed memory
•  No less scalable than message passing
•  Permits sharing, unlike message passing
•  One-sided communication: never say “receive”

Two-sided vs One-sided
Communication

•  Two-sided message passing (e.g., MPI) requires
matching a send with a receive to identify memory
address to put data
–  Wildly popular in HPC, but cumbersome in some applications
–  Couples data transfer with synchronization

•  Using global address space decouples synchronization
–  Pay for what you need!
–  Note: Global Addressing ≠ Cache Coherent Shared memory

address

message id

data payload

data payload
one-sided put message

two-sided message

network
 interface

memory

host
CPU

Joint work with Dan Bonachea, Paul Hargrove,
Rajesh Nishtala and rest of UPC group	

One-Sided Communication Avoids
Unnecessary Overheads

Comparison of MPI to GASNet (LBNL/UCB one-sided
communication layer)

Joint work with Berkeley UPC Group	

3D FFT on BlueGene/P

Joint work with Rajesh Nishtala, Dan Bonachea,
Paul Hargrove,and rest of UPC group	

27

Avoid Synchronization

Computations as DAGs
View parallel executions as the directed acyclic graph of the
computation

Slide source: Jack Dongarra	

Parallel LU Factorization

Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part of L

A(i,j)‏ A(i,k) ‏

A(j,i)‏ A(j,k) ‏

Trailing matrix
to be updated

Panel being factored

Completed part of U

Event Driven Execution of LU

•  Ordering needs to be imposed on the schedule
•  Critical operation: Panel Factorization

–  need to satisfy its dependencies first
–  perform trailing matrix updates with low block numbers first
–  “memory constrained” lookahead

•  General issue: dynamic scheduling in partitioned memory
–  Can deadlock memory allocator!

some edges omitted

30

 DAG Scheduling Outperforms
Bulk-Synchronous Style

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding
–  New problem in partitioned memory: allocator deadlock
–  Can run on of memory locally due tounlucky execution order

PLASMA on shared memory UPC on partitioned memory

PLASMA by Dongarra et al; UPC LU joint with
Parray Husbands	

Hierarchical PGAS Memory Model

•  A global address space for hierarchical machines may have multiple
kinds of pointers

•  These can be encode by programmers in type system or hidden,
e.g., all global or only local/global

•  This partitioning is about pointer span, not control / parallelism

B

span 1
(core local)

span 2
(chip local)

level 3
(node local)

level 4
(global world)

C
D

A
1

2
3 4

Autotuning: Write Code Generators

•  Autotuners are code generators plus search
algorithms to find best code

•  Avoids compiler problems of dependence analysis
and approximate performance models

  Functional portability
from C

  Performance portability
from search at install time

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Multiply

specialized
to n,m

BLAS = Basic Linear Algebra Subroutine: matrix multiply, etc.

BLAS
Library

Atlas
Autotuner:
code generator
+search

Performance of Autotuned Matrix Multiply
HP 712 / 80i

Autotuners for Input-
Dependence Optimizations

•  Sparse Matrix
–  Significant index meta data
–  Irregular memory accesses
–  Memory bound

•  Autotuning
–  Tune over data structures (add 0s)
–  Delayed tuning decisions until runtime
–  Still use significant install-time tuning (dense matrix in

sparse format) with online specialization based on matrix
structure

Protein FEM /
Spheres

FEM /
Cantilever

FEM /
Accelerator Circuit webbase

0
1
2
3
4
5
6
7
8
9

10
11

D
en

se

Pr
o
te

in

S
p
h
er

es

C
an

ti
le

ve
r

W
in

d
Tu

n
n
el

H

ar
b
o
r

Q
C
D

S
h
ip

E
co

n
o
m

ic
s

E
p
id

em
io

lo
g
y

A
cc

el
er

at
o
r

C
ir
cu

it

W
eb

b
as

e LP

G
F
lo

p
/

s

Xeon X5550
(auto-tuned Pthreads)

Auto-
tuned

See theses from Im, Vuduc, Williams, and Jain

Recent Past Autotuners:
Sparse Matrices

•  OSKI: Optimized Sparse Kernel Interface
•  Optimized for: size, machine, and matrix structure
•  Functional portability from C (except for Cell/GPUs)
  Performance portability

from install time search and
model evaluation at runtime

  Later tuning, less opaque
interface

Matrix
Vector Mul
specialized

to n,m

Triangular
Solve

specialized
to n,m

Matrix
Vector Mul
specialized

to n,m,
structure

See theses from Im, Vuduc, Williams, and Jain

OSKI
Library

OSKI
Autotuner:
code generator
+search

Performance on Median Matrix of Suite

Improving Support for Writing
Autotuners"

•  Ruby class
encapsulates SG
pattern"
–  body of anonymous

lambda specifies filter
function"

•  Code generator
produces OpenMP "
–  ~1000-2000x faster than

Ruby"
–  Minimal per-call runtime

overhead"

class LaplacianKernel < Kernel
 def kernel(in_grid, out_grid)
 in_grid.each_interior do |point|
 in_grid.neighbors(point,1).each
 do |x|
 out_grid[point] += 0.2*x.val
 end
 end
end

VALUE kern_par(int argc, VALUE* argv, VALUE
self) {
unpack_arrays into in_grid and out_grid;

#pragma omp parallel for default(shared)
private (t_6,t_7,t_8)
for (t_8=1; t_8<256-1; t_8++) {
 for (t_7=1; t_7<256-1; t_7++) {
 for (t_6=1; t_6<256-1; t_6++) {
 int center = INDEX(t_6,t_7,t_8);
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6-1,t_7,t_8)]));
 ...
 out_grid[center] = (out_grid[center]
 +(0.2*in_grid[INDEX(t_6,t_7,t_8+1)]));
;}}}
return Qtrue;}

Joint with Shoaib Kamil,
Armando Fox, John Shalf.

Algorithms to Optimize for
Communication

36 36

Choose Scalable Algorithms

• Algorithmic gains in last decade have
far outstripped Moore’s Law

– Adaptive meshes
 rather than uniform
– Sparse matrices
 rather than dense
– Reformulation of
 problem back to basics

• Two kinds of scalability
– In problem side (n)
– In machine size (p)

• Example of canonical “Poisson” problem on n points:
– Dense LU: most general, but O(n3) flops on O(n2) data
– Multigrid: fastest/smallest, O(n) flops on O(n) data

Performance results: John Bell et al	

 Communication-Avoiding
Algorithms

Consider Sparse Iterative Methods
•  Nearest neighbor communication on a mesh
•  Dominated by time to read matrix (edges) from DRAM
•  And (small) communication and global

synchronization events at each step
Can we lower data movement costs?
•  Take k steps “at once” with one matrix read
 from DRAM and one communication phase
–  Parallel implementation

 O(log p) messages vs. O(k log p)
–  Serial implementation

 O(1) moves of data moves vs. O(k)

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

38

Bigger Kernel (Akx) Runs at Faster
Speed than Simpler (Ax)

Speedups on Intel Clovertown (8 core)

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick

“Monomial”	
 basis	
 [Ax,…,Akx]	
 	
 	

fails	
 to	
 converge	

	
 A	
 different	
 polynomial	
 basis	
 does	
 converge	

Communication-Avoiding
Krylov Method (GMRES)

Performance on 8 core Clovertown

Communication-Avoiding Dense
Linear Algebra

•  Well known why BLAS3 beats BLAS1/2: Minimizes
communication = data movement
–  Attains lower bound Ω (n3 / cache_size1/2) words moved in

sequential case; parallel case analogous
•  Same lower bound applies to all linear algebra

–  BLAS, LU, Cholesky, QR, eig, svd, compositions…
–  Sequential or parallel
–  Dense or sparse (n3 ⇒ #flops in lower bound)

•  Conventional algs (Sca/LAPACK) do much more
•  We have new algorithms that meet lower bounds

–  Good speed ups in prototypes (including on cloud)
–  Lots more algorithms, implementations to develop

42

General Lessons

•  Early intervention with hardware designs
•  Optimize for what is important:
 energy  data movement
•  Anticipating and changing the future

–  Influence hardware designs
–  Use languages that reflect abstract machine
–  Write code generators / autotuners
–  Redesign algorithms to avoid communication

•  These problems are essential for computing
performance in general

43

Questions?

44

