~
A
reeocore] !

BERKELEY LAB Lawrence Berkeley National Laboratory

CUDA accelerated X-ray
Imaging

Filipe Maia
NERSC

Stefano Marchesini
ALS

2011-01-26 /Rsc

Single Particle X-ray Diffraction

.. I

LCLS Beam

~
-~

Pixel
Detector 1

Pixel
Detector 2

Protein
Molecule

To Mass
Spectrometer

X-ray Diffraction Pattern

frrereer ||/1

BERKELEY LAB

Single Particle X-ray Diffraction

« Recover an object from its diffraction pattern.
* |terative procedure
* Requires user interaction to find best parameters

@) =170~ G

Tle) = ol
Constraints

« CUDA made reconstruction A
an order of magnitude faster

v

Ptychography - Realtime X-ray “microscope”

Image or

Data
volume

Registration
(FFTs)

— Overlap

Autofocus
(SpMV)

* Fast auto-focus possible with 1 GPU+fast motors.
* Algorithms tolerate 100 nm vibrations/accuracy ($200k saving)
* 50 MB/s enable real time high resolution imaging

Nanosurveyor - Ptychography

HPC
infrastructure at
LBL

Implement dedicated
infrastructure at ALS

Phase Contrast X-ray Tomography BL83.2

%’("”’)~ =k'V_*(1(x,)V ¢(x.y))
Transport of intensity equation

BERKELEY LAB

Distance | Distance 2

phase contrast

|

I, ‘”

il

tomogram

Sinogram

Inverse
radon

BERKELEY LAB

Need fast Radon transform

H tomogram

Sinogram
=

—

radon

density

compensation

gridding

4 FFT?2 Hdeapodization

convolution

Inverse
gridding

q IFFT2 H deapodization

Need fast Radon transform

é rad on H tomogram
= : ' —
| | P . / V

Sinogram

gridding FFT2 ™ deapodization

convolution

Inverse
gridding

IFFT2 H deapodization

density
compensation

Inverse Gridding

« Convert from Cartesian to polar samples

'
« * * e

Inverse Gridding

- We will use a Kaiser Bessel function for the sampling.

Inverse Gridding — GPU Strategy

« Divide the input in equal area regions.

Halo Around
Each Block

. J Area Assigned
| To One Block

- Input Samples

Output Samples

Inverse Gridding — GPU Strategy

for each {
by
for each sample point in {
for each within of sample point{

distance = sample point position -
grid point cache position
sample += * KB weight(distance)

rreeeer q

BERKELEY LAB

Inverse Gridding — Load Imbalance

« More balanced regions!

Inverse Gridding — GPU Strategy 2.0

» Recursively bisect the regions of highest workload (quadtree).

Area Assigned
To One Block

1Input Samples

~|output Samples

Inverse Gridding — GPU Strategy 2.0

* Recursively bisect the regions of highest workload (quadtree).

3 N v p

'..\/.:.-,.

Area Assignhed
To One Block

| output Samples

Inverse Gridding — GPU Strategy 2.0

* Recursively bisect the regions of highest workload (quadtree).

3 N IS (BTN R

'..\/.:.-,.

Area Assignhed
To One Block

| output Samples

Inverse Gridding — GPU Strategy 2.0

* Recursively bisect the regions of highest workload (quadtree).

:°.f\°'.

'..\./.:.-,.

Area Assignhed
To One Block

| output Samples

Gridding

* More complicated
» We can’t predict the location of the input samples

Halo Around
Each Block

. L Area Assigned
1 To One Block

| Input Samples

Output Samples

-~
- A
rrrrrrr "“|

BERKELEY LAB

Gridding

for each within {

}

for each grid point in {

for each {
distance = grid point position -
if(distance <=){
grid sample += * KB weight(distance)

b

.Zfﬁﬁﬂ

BERKELEY LAB

Gridding — Two area types

Large and Sparse

>[4

Small and Dense

Gridding — Two area types

* Lots of grid points and not much work per
grid point
« Strategy 1 — One thread per grid point

Large and Sparse

 Very few grid points to calculate and lots of
work per grid point .

- Strategy 2 — All the threads calculate each Small and Dense
grid point (requires a reduction)

~
» A
11l
lllllll

BERKELEY LAB

for each within {

}
if(sparse region){
for each grid point in in blockSize steps{
for each {
distance = grid point position -
if(distance <=){
grid sample += * KB weight(distance)
b
¥
¥
telse{
for each grid point in {
for each in blockSize steps{
distance = grid point position -
if(distance <=){
grid sample += * KB weight(distance)
}
¥
if(threadId == 0){
grid sample = block reduce(grid sample)
b
¥
, Around 50x speedup compared to 1 core

rreeeer q

BERKELEY LAB

Conclusions

« GPUs can provide large computing power for interactive tasks.
* They are often more power efficient.
* Require careful programming to take full advantage of.

* The performance improvement provided can make new
algorithms feasible.

Acknowledgements

* *
* * * RECOVERY.GOV

- American Recovery Act

* SCiIDAC DOE

Thank You

\

ffrrreer “l‘

BERKELEY LAB

Lawrence Berkeley National Laboratory

, U.S. DEPARTMENT OF 2 UNIVERSITY OF
‘ CALIFORNIA

