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Single Particle X-ray Diffraction
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Single Particle X-ray Diffraction

« Recover an object from its diffraction pattern.
* |terative procedure
* Requires user interaction to find best parameters
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« CUDA made reconstruction A
an order of magnitude faster
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Ptychography - Realtime X-ray “microscope”

Image or

Data
volume

Registration
(FFTs)

— Overlap

Autofocus
(SpMV)

* Fast auto-focus possible with 1 GPU+fast motors.
* Algorithms tolerate 100 nm vibrations/accuracy ($200k saving)
* 50 MB/s enable real time high resolution imaging




Nanosurveyor - Ptychography

HPC
infrastructure at
LBL

Implement dedicated
infrastructure at ALS




Phase Contrast X-ray Tomography BL83.2
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Need fast Radon transform
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Need fast Radon transform
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Inverse Gridding

« Convert from Cartesian to polar samples
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Inverse Gridding

- We will use a Kaiser Bessel function for the sampling.




Inverse Gridding — GPU Strategy

« Divide the input in equal area regions.
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Inverse Gridding — GPU Strategy

for each {
by
for each sample point in {
for each within of sample point{

distance = sample point position -
grid point cache position
sample += * KB weight(distance)
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Inverse Gridding — Load Imbalance

« More balanced regions!




Inverse Gridding — GPU Strategy 2.0

» Recursively bisect the regions of highest workload (quadtree).
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Inverse Gridding — GPU Strategy 2.0

* Recursively bisect the regions of highest workload (quadtree).
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Inverse Gridding — GPU Strategy 2.0

* Recursively bisect the regions of highest workload (quadtree).
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Inverse Gridding — GPU Strategy 2.0

* Recursively bisect the regions of highest workload (quadtree).
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Gridding

* More complicated
» We can’t predict the location of the input samples
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Gridding

for each within {

}

for each grid point in {

for each {
distance = grid point position -
if(distance <= ){
grid sample += * KB weight(distance)

b
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Gridding — Two area types

Large and Sparse
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Small and Dense




Gridding — Two area types

* Lots of grid points and not much work per
grid point
« Strategy 1 — One thread per grid point

Large and Sparse

 Very few grid points to calculate and lots of
work per grid point .

- Strategy 2 — All the threads calculate each Small and Dense
grid point (requires a reduction)
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for each within {

}
if(sparse region){
for each grid point in in blockSize steps{
for each {
distance = grid point position -
if(distance <= ){
grid sample += * KB weight(distance)
b
¥
¥
telse{
for each grid point in {
for each in blockSize steps{
distance = grid point position -
if(distance <= ){
grid sample += * KB weight(distance)
}
¥
if(threadId == 0){
grid sample = block reduce(grid sample)
b
¥
, Around 50x speedup compared to 1 core
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Conclusions

« GPUs can provide large computing power for interactive tasks.
* They are often more power efficient.
* Require careful programming to take full advantage of.

* The performance improvement provided can make new
algorithms feasible.
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