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ATLAS - Prominent High Energy Experiment at LHC, CERN
 New discoveries in Fundamental Physics
 Large rate of data:

100 million electronic channels
200 proton-proton collision events/s -> 500MB/s

 ~10000 CPU nodes housed at CERN and around the world

Introduction to ATLAS

L = 45 m
D = 25 m
M = 7000 tons

Data = 5 PBytes/year
2500 Scientists

ATLAS Detector Collision Event
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ATLAS software
ATHENA - ATLAS software for Reconstruction, Simulation and Analysis.
 Highly robust OO framework based on HEP GAUDI architecture
 Large – 4000 components, 2500 shared libraries
More than 300 active software developers
 Configured and Steered by Python front-end  - athena.py
 High application size ~1.5 Gb of real memory for Reconstruction.
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2 cores 4 cores
8 cores

12 cores

Typical system: [ Intel-Nehalem, 8 CPU-cores/box, 2Gb/core, ~2.5Ghz ]

 Upgrades: [ Intel-Sandybridge,  12-24 CPU-cores/box, 2-3Gb/core, ~2.5Ghz ]

 In future: [ 32 and more CPU-cores/ box , 3 Gb/core, ~2.5Ghz ]

ATLAS multicore hardware
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32 and
more

Efficient exploitation of multiple cores on single box is essential!
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HyperThreading
Enables 2 logical cores 

per 1 physical core

Multicore Era

power wall

Ghz Era
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PART I:
Harnessing multi-core systems in ATLAS



What to expect from parallel solution?

1. Sharing resources (memory and IO)
• Sharing Large part of process memory by cores.
• Sharing IO and Persistent to Transient 

conversions

2. Scalability (parallel event processing throughput)
• Close to linear scaling on many-core machines  
• Explore Hyper-Threaded CPU cores.

3. Transparency
• User easily exploits multiple cores
• Minimum changes to the existing code base 4      
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4. Configurability
• Easy and robust control of AthenaMP.

5. Generalization
• Works for all Atlas domains:

reconstruction, simulation, digitization, pileup

• Works for all Athena run types:  
jobos, job-trfs

• Works for all i/o data types and storages:   
data types: bs, raw, rdo, esd, aod, tag, histos, perfmon, monitor

storages: pool, root-storage, root-collections, root, custom-types.

What to expect from parallel solution?
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 Jobs in parallel (job parallelism)
 Simplest, no code rewriting 
 No sharing of resources

 Events in parallel (event parallelism) 
Minimal changes to the existing code
 Share Memory (code, configuration, detector data, etc.)
 Requires: Parallelization of I/O

 Sub-event parts in parallel (fine-grained parallelism)
 Parallelize tasks and “regions of interest” within Atlas 
domain and event using multithreaded approach.

Athena MJ

Athena MP

Possible Parallelization Approaches

Athena MT , GPU  (future plans)



Athena jobs in parallel

end

for i in range(4):   
$> athena.py  -c  “EvtMax=25; SkipEvents=$i*25”  Jobo.py 

co
re

-0

JOB 0:
Events: [0,1,…,24]

co
re

-1

JOB 1:
Events: [25,…,49]

co
re

-2

JOB 2:
Events: [50,…,74]

co
re

-3

JOB 3:
Events: [75,…,99]

PARALLEL: 4 independent jobs

start

endstart

endstart

endstart

init

init

init

init

Athena MJ
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end

Input 
Files

Output Files

OS-fork merge

$> athena.py  --nprocs=4  -c  EvtMax=100  Jobo.py

firstEvnts

co
re

-0 WORKER 0:
Events: [0, 4, 8,…96]

co
re

-1

WORKER 1:
Events: [1, 5, 9,…,97]

co
re

-2 WORKER 2:
Events: [2, 6, 10,…,98]

co
re

-3 WORKER 3:
Events: [3, 7, 11,…,99]

output-
tmp
files

output
tmp
files

Output
tmp
files

Output
tmp files

init

Minimize  the 
consumed 
memory!

PARALLEL: workers event loopSERIAL: 
parent-init-fork

SERIAL:
parent-merge and finalize

AthenaMP – transparent approach 
to process events in parallel

WORKER - forked clone of serial process
 Master process memory is used by workers

 Processes see the same physical memory while reading 10



How AthenaMP Works?
1. Initialize serial version of Athena. 

 Wrap athena EventLoopMgr with mp version during initialization. 

 Configure athena job, initialize athena, load necessary libraries.

2. Create pool of event processing Workers

 Fork workers using multiprocessing package in python 

 Processes see the same physical memory initially

 New allocations and touched pages created in private memory 

3. Merge Output:

 Input: Each worker processes separate set of events from common event file.

 Output: Each worker produces separate set of output files.

WORKER  1:
WORKER  1:

WORKER  1:
WORKER  1:

Athena FORK

WORKER = Copy-on-Write forked clone
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1. Resource sharing in AthenaMP

AthenaMP 0.5 Gb physical memory shared per process

0

0.5
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Gb

Number of Processes

Memory per process

AthenaMP

AthenaMJ

0.5Gb 

Shared

12

Platform: 
Intel Nehalem X5550
Cores: 8 (2 x Quad) 
Mem: 24 Gb

8 physical cores



2. Scaling of AthenaMP and AthenaMJ
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Platform: 
Intel Nehalem X5550
Cores: 8 (2 x Quad) 
Mem: 24 Gb

8 physical cores



Gain from Hyper-Threading

AthenaMP total event throughput
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Platform: 
Intel Nehalem X5550
Cores: 8 (2 x Quad) 
Mem: 24 Gb

hyper-threading effect

8 physical cores



Confining workers to cpu-cores

Affinity:  pinning each processes to a separate CPU-core

Floating:  each process scheduled by OS; frequent task switching
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increase
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Turn any standard ATLAS job into mp-version by:

athena.py  --nprocs=4 rdotoesd.py …

reco_trf.py --athenaopts=“--nprocs=2" …

3. Transparency of AthenaMP

16



4. Configurability of AthenaMP
Configuration of AthenaMP is done using the jobproperties:

from AthenaMP.AthenaMPFlags import jobproperties

Various switches and properties should allow user-friendly control.

# AthenaMP/python/AthenaMPFlags.py

from AthenaMP.AthenaMPFlags import jobproperties as jps

mpjp = jps.AthenaMPFlags

mpjp.EventsBeforeFork = 0

mpjp.AffinityCPUList = [0,1,2,3,4,5,6,7]

mpjp.TmpDir = “/tmp/tmp_dir”

mpjp.doFastMerge = True

mpjp.doRoundRobin = False

# more will be added as needed

# example: AthenaMP/share/mp_rdotoesd.py 17



5. Challenges of Generalizing AthenaMP

 RECONSTRUCTION
Job option recos

Job transform recos, chained job transforms (rdo2esd2aod-tag)

Large nbr. of different output files 

Problems with PoolFileCatalog

ByteStream-RECONSTRUCTION
 Seeking didn’t work

 Problems with PoolFileCatalog

SIMULATION
Random generator seeding

Outside framework files

 DIGITIZATION 

 PILE UP
Uses it’s own PileUpEvtLoopMgr

Multiple inputs and files. 
18



Scaling of AthenaMP on
multi-core machines

Nehalem: 2x quad core X550
2.67 GHz, 24 Gb

Clovertown: 2x quad core Xeon E5345
2.33 GHz, 16 Gb

Evts/worker/min

Number of procs

AMD: 8x quad core 
Opteron 8384-256Gb

Values at np=1,2 effect of Turbo-boost
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AthenaMP Progress
Achievements:

 AthenaMP reduces memory requirement by 35%.

 Good mp-scaling on current hardware

 Affinity settings exploit CPUs better than Linux CPU scheduling.

 MP-Queue balances workers arrival times.

 Hyper-Threading  gives 25-30%  gain on throughput.

Remaining Challenges:
 IO will become limiting factor for multiple workers: Optimize parallel IO that 

currently relies fully on OS and requires additional job of merging the output . 

 Mitigate NUMA effects on multi-core machines

 Exploit the finer grained parallelism by using threads.

20



21

PART II: 
Performance and optimization 

study of Athena



Tools Used
 Linux tools:

– sar (I/O to disk and system-CPU, Memory, IO loads)
– vmstat: memory performace
– IPM: time spent in I/O vs computation
– numastat/numactl: reports/controls NUMA memory 

settings

 Intel Performance Tuning Utility (PTU)
– Uses linux kernel module to provide a sampling profiler
– Captures information from hardware counters 

available on Intel chips
– Most accurate tool to understand what's going on at 

the hardware level
– HUGE number of counters available 22
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Initial Assumptions

• Our initial assumption was that we were 
I/O and memory bandwidth limited 

we were WRONG
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Issues with large OOP Code Bases

• Function calls result in added instructions

– Call and return

– Runtime address resolution (trampolines) required for 
position independent code/ shared object cross invocations

•Indirect branches can be more costly

– Freeing & restoring registers for local use

– Setting and reading function arguments

• Virtual function calls (function pointers) increase 
indirect call instructions and associated pointer loads

– Virtual functions can't be inlined!

• Atlas code has 2500 shared libraries!
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Observations from Intel-PTU

• In Atlas code, functions are on average only 33 
instructions long

• Overhead for function calls is anywhere between 6 
and 12 instructions

– We can have up to 35% overhead!

• We also see instruction starvation of about 20%
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Short Term Solutions

• Use social network analysis to identify clusters of active, costly 

function call activity

• Order clusters by total time and/or total “cost”

– Split time of functions shared between clusters by call counts

– Calls have a direction

– Utility functions must not be viewed as bridges

• Manually reduce function count in hot clusters by explicit code 

inlining

• Prioritize work by call overhead cost to be gained

• Reduce cross shared object call counts
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Part III: 
GPU computing in ATLAS:
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Particle tracking in magnetic field simulation. 
Solve the differential equation with 4th order RungaKutta Integration
A. Washbrook, P.J. Clark – ATLAS-Group @ University of Edinburgh, UK

Preliminary results (Tesla C1060): achieved a factor 32 speedup !



THANK YOU!
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CPU Architectures used in ATLAS
Intel Nehalem

coors.lbl.gov, rainier.lbl.gov

Intel sub-Nehalem
most of LXPLUS machines:

Voatlas91,lxplus250,lxplus251

CPU-Memory symmetric access 
• Hyper Threading ->two logical cores on physical one

• QPI  Quick Path from CPU to CPU and CPU-to-Memory

• Turbo Boost  -> dynamic change of CPU-frequency

• CPU-Memory non-symmetric access (NUMA)
32



33

Event processing for Queue vs. Static 
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Round-robin event distribution Queue event distribution

Workers throughput 
for Queue vs. Round-Robin

Balance the arrival times of workers!

Number of procs Number of procs

Evts/worker/min Evts/worker/min
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Event distribution using Queue…

co
re

-0

WORKER 0:
Events: [0, 4, 5,…]

co
re

-1
WORKER 1:
Events: [1, 6, 9,…]

co
re

-2

WORKER 2:
Events: [2, 8, 10,…]

co
re

-3

WORKER 3:
Events: [3, 7, 11,…]

events = multiprocesssing.queue(EvtMax+ncpus)
events = [0,1,2,3,4,…,99, None,None,None,None]

…

evt_loop(evt=events.get(); evt != None):
evt_loop_mgr.seek (evt_nbr)
evt_loop_mgr.nextEvent ()

Balance the arrival times of workers!
Slower worker doesn’t get left behind
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Worker Throughput, No Event Queue

individual worker 
event rates

overall job rate

- 8 core HT machine
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Worker Throughput with Event Queue

overall throughput
without queue

individual worker 
event rates

overall throughput, 
with queue

- 8 core HT machine
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Workers floating Workers pinned to cpu-cores

Effect of Affinity Settings

Number of procs Number of procs
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Maximizing AthenaMP performance
1. Externally available performance gains (without touching the 

athena code)

• Architectural gains: HyperThreading, QPI, NUMA etc.

• OS gains: affinity, numactl, io-related, disks, virtual machines, etc.

• Compiler, Malloc, etc.

2. Gains from Athena/AthenaMP design improvements: 

• Faster initialization…

• Faster distribution of events to workers...

• Faster merging: merging events processed by workers  instantly by 
one writer on a fly, without waiting for workers to finish…

• Faster finalization…
endless ground for improvements :)
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Tests:

/share/mp_genevt_test.py

/share/mp_basic_test.py

Running Reco:

athena.py –nprocs=$ncpus reco_jobo.py

#example of AthenaMP configuration for reco job

/share/mp_reco_fast.py

Running Job Transform:

===========================================

csc_atlasG4_trf.py --athenaopts="--nprocs=2"

inputEvgenFile=evgen-105145.pool.root

outputHitsFile=HITS.pool.root maxEvents=2 skipEvents=1 randomSeed=3945

geometryVersion=ATLAS-GEO-10-00-00 physicsList=QGSP_BERT

conditionsTag=OFLCOND-SIM-BS7T-02 IgnoreConfigError=False AMITag=s765

=========================================== 

Running AthenaMP jobs.
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The scripts for mp-scaling 
measurements in Athena

mpMon.py - mp-scaling measurement script that runs automatically athenaMP

and collects system data using sar (CPU, IO, Memory) + numa activity during the run; 

and  extracts worker-time-statistics from the parent and workers logs. The script allows 

to vary numa bindings, affinity settings.

$>  mpMon.py --jobo 'athena.py --nprocs=$NPROCS rdotoesd.py -c EvtMax=$MAXEVT'  \

--np [1,2,4,8,12,16,18]      --ne 100    --comments "HTon.TBon"   --doPlots --output   mpMon.log

mjMon.py - mp-scaling for athena multi jobs (Athena MJ), similar to mpMon.py

$> mjMon.py –jobo „athena.py –c EvtMax=$MAXEVT rdotoesd.py‟  \

-np [1,2,4,8,12,16,18]  –ne 100     –comments “Hton.Tbon”  –doPlots –output mpMon.log

#mp-scaling of the job-transform
$> mjMon.py --np [1,2,4] --ne 100  --se 10 --output mjMon.log --comments “trf“  --doPlots \

--jobo 'csc_atlasG4_trf.py inputEvgenFile=Evt.pool.root outputHitsFile=HITS.pool.root maxEvents=$MAXEVT  \

skipEvents=$SKIPEVT  randomSeed=54298752 geometryVersion=ATLAS-GEO-08-00-01 physicsList=QGSP_BERT  jobConfig=NONE‟

both scripts come with Control/AthenaMP package.

MP-scaling reports of rdotoesd for both AthenaMP and AthenaMJ on different 

machines here: 
https://docs.google.com/leaf?id=0B1Yjr6DOl_RaOTM0OTUyNGItMjk4Ni00NmRmLTg4NjctMDc5ZWRmM2I0NDA5&hl=en 41


