Sy

A
FrrrrernrT |1

KL l.l:

Multiprocessing in CERN-ATLAS

Scalability and the Real World:
Lessons Learned Optimizing ATLAS Reconstruction
Performance on Multi-Core CPUs.

Mous Tatarkhanovt

Sebastien Binet?, Paolo Calafiural, Charles Leggett?,
Wim Lavrijsen*, David LevinthalP’, Yushu Yao*

iLawrence Berkeley National Lab, 2LAL, 3Intel

ICCS-2011 - January 26, 2011 —Berkeley, CA

’i}\q Introduction to ATLAS
ATLAS - Prominent High Energy Experiment at LHC, CERN
» New discoveries in Fundamental Physics
» Large rate of data:
100 million electronic channels

200 proton-proton collision events/s -> 500MB/s
» ~10000 CPU nodes housed at CERN and around the world

ATLAS Detector Collision Event

D=25m Data = 5 PBytes/year
M = 7000 tons 2500 Scientists 2

BrRcELey Lam

’}\ ATLAS software @

ATHENA - ATLAS software for Reconstruction, Simulation and Analysic
» Highly robust OO framework based on HEP GAUDI architecture
» Large — 4000 components, 2500 shared libraries
» More than 300 active software developers
» Configured and Steered by Python front-end - athena.py
» High application size ~1.5 Gb of real memory for Reconstruction.

| Application -
l Sequencer } Manager |- l EveEn’ng 1 Converter
: 00 r
MCSS'Gge i S\ StoreGate Transient Per'sis'l'ency Yata
Service \ / Sve S E‘;"':'f Service iles
i ore
JobOptions v
. N .
Service Algorithm —‘ - Tl
Parti . Transient Persist
article Prop.,_—~ / ~. StoreGate N ersistencyl pata
! etector Servi)
Service Svc Store ervice iles
Other
Services
s , &
‘ e Histogram Transient Persistency 'Data
- Scripting Service Histogram Service :
Auditors Service Store iles

Single-threaded design ! 3

"y

_, ATLAS multicore hardware

» Typical system: [Intel-Nehalem, 8 CPU-cores/box, 2Gb/core, ~2.5Ghz]
» Upgrades: [Intel-Sandybridge, 12-24 CPU-cores/box, 2-3Gb/core, ~2.5Ghz]
» |In future: [32 and more CPU-cores/ box , 3 Gb/core, ~2.5Ghz]

,,,,,,,,,,,,,,,, o MANY
Multicore Era > 4] CORES
Ghz Era;g 32 and
ower w al I TUTITTE m O re
A st Core
e B 12 cores
HyperThreading

Enables 2 logical cores
per 1 physical core

Efficient exploitation of multiple cores on single box is essential!

A

PART I:
Harnessing multi-core systems in ATLAS

BrRcKELey Lam

/_\N What to expect from parallel solution? “1‘:

1. Sharing resources (memory and 10)
* Sharing Large part of process memory by cores.
* Sharing IO and Persistent to Transient
conversions

2. Scalability (parallel event processing throughput)
* C(Close to linear scaling on many-core machines
 Explore Hyper-Threaded CPU cores.

3. Transparency
 User easily exploits multiple cores
* Minimum changes to the existing code base 4

My

-_ What to expect from parallel solution? @

4. Configurability
* Easy and robust control of AthenaMP.

5. Generalization
e Works for all Atlas domains:
reconstruction, simulation, digitization, pileup

 Works for all Athena run types:
jobos, job-trfs

 Works for all i/o data types and storages:
data types: bs, raw, rdo, esd, aod, tag, histos, perfmon, monitor

sto rages. pool, root-storage, root-collections, root, custom-types. /

Possible Parallelization Approaches

» Jobs in parallel (job parallelism) Athena MJ
= Simplest, no code rewriting
" No sharing of resources

» Events in parallel (event parallelism) Athena MP
" Minimal changes to the existing code
» Share Memory (code, configuration, detector data, etc.)
= Requires: Parallelization of 1/0

» Sub-event parts in parallel (fine-grained parallelism)
" Parallelize tasks and “regions of interest” within Atlas
domain and event using multithreaded approach.

Athena MT, GPU (future plans) g

"y

i}\‘l Athena jobs in parallel
o , Athena M)
ori in range(4):

$> athena.py -c¢ “EvtMax=25; SkipEvents=$i*25" Jobo.py

4 N\
. . JOB 0:
start Init Events: [0,1,...,24]
g /
4)\
— JOB 1:
L] Init Events: [25,...,49]
g /

[start H init }_> izsznzt;: [50,...,74]

B JOB 3:
o
S PARALLEL: 4 independent jobs —

AthenaMP - transparent approach
to process events in parallel

$> athena.py --nprocs=4 -c EvtMax=100 Jobo.py

reeeree ‘m

. _ | WORKERO: .
Minimize the Events: [0, 4, 8,...96] fi|e2]

consumed

memory!

\ output
> WORKER 1:

. tmp
[firstEvnts] Events: [1, 5, 9,...,97] files

init 0S-fork merge

Output

WORKER 2: tmp

Events: [2, 6, 10,...,98] = files .
Input -

.P v Output Files
Files : &
> WORKER 3: tmp files
Events: [3, 7, 11,...,99] — "

SERIAL: . SERIAL:
{ parent-init-fork I [PARALLEL Workers event |00p H parent-merge and finalize }

WORKER - forked clone of serial process
» Master process memory is used by workers
» Processes see the same physical memory while reading 10

y

ceceery] How AthenaMP Works?

1. Initialize serial version of Athena.
= Wrap athena EventLoopMgr with mp version during initialization.
= Configure athena job, initialize athena, load necessary libraries.
2. Create pool of event processing Workers
» Fork workers using multiprocessing package in python
» Processes see the same physical memory initially
» New allocations and touched pages created in private memory

WORKER = Copy-on-Write forked clone

N
S
Athena FORK A

WORKER 1:

SHARED MEM l-

3. Merge Output:
» Input: Each worker processes separate set of events from common event file.
= Qutput: Each worker produces separate set of output files. 11

"y

rerrrrnr
ERKELEY La

Memory per process

1. Resource sharing in AthenaMP

Platform:

2.5 [8physicalcores Intel Nehalem X5550
o Cores: 8 (2 x Quad)
2 Mem: 24 Gb
1.5 .
R I 0.5Gb
1 ’ o . Shared
0.5 + AthenaMP
0 —AthenaMJ

O 2 4 6 8 10 12 14

Number of Processes

16

AthenaMP 0.5 Gb physical memory shared per process

12

Evts/min

50
45
40
35
30
25
20
15
10

Total Event Throughput

Hit the memory limit -

Number of Processes

— 8 physical cores > swapping starts
Vi ‘//‘/X
/ Platform:
7 ¢ Intel Nehalem X5550
/ Cores: 8 (2 x Quad)
/ t Mem: 24 Gb
/A ¢ AthenaMP
S
/ A AthenaMJ
*
/ —Ideal Scaling
0 2 4 6 8 10 12 14 16

13

"y

rerrrrernr
KLY

iﬂ |

45

40

35

30

Evts/min 25
20

15

10

5

0

Gain from Hyper-Threading @

AthenaMP total event throughput

hyper-threading effect

8 physical cores — ¢ N\ ¢
25% 'S
Increase .
<>V O o
Platform:
o Intel Nehalem X5550
Cores: 8 (2 x Quad)
Mem: 24 Gb
4
. ¢ AthenaMP-HT-on
& AthenaMP-HT-off
2 4 6 8 10 12 14 16

Number of Processes

14

Confining workers to cpu-cores @

Affinity: pinning each processes to a separate CPU-core

Floating: each process scheduled by OS; frequent task switching
Evts/proc/min

6
@
5 ® °
- ’T 40 %
4 .
increase
0 I
3 o)
5 ® Best Affinity
. O Floating
ideal
0
0 2 6 8 10

4
Number of Processes

15

=11 3. Transparency of AthenaMP @

Turn any standard ATLAS job into mp-version by:
athena.py --nprocs=4 rdotoesd.py ..

reco_trf.py --athenaopts=*“--nprocs=2" ..

16

"y

rerrrrernr

4. Configurability of AthenaMP @

Configuration of AthenaMP is done using the jobproperties:
from AthenaMP.AthenaMPFlags import jobproperties

Various switches and properties should allow user-friendly control.
AthenaMP/python/AthenaMPFlags.py

from AthenaMP.AthenaMPFlags import jobproperties as jps

mpjp = jps.AthenaMPFlags

mpjp.EventsBeforeFork = 0

mpjp.AffinityCPUList = [0,1,2,3,4,5,6,7]

mpjp.TmpDir = “/tmp/tmp_dir”

mpjp.doFastMerge = True

mpjp.doRoundRobin = False

more will be added as needed

example: AthenaMP/share/mp_rdotoesd.py 17

P

&

N

/_\NS Challenges of Generalizing AthenaMP
= RECONSTRUCTION

=Job option recos

=Job transform recos, chained job transforms (rdo2esd2aod-tag)
=l arge nbr. of different output files
=Problems with PoolFileCatalog

="ByteStream-RECONSTRUCTION

= Seeking didn’t work
= Problems with PoolFileCatalog

=SIMULATION

mRandom generator seeding
=Qutside framework files

" DIGITIZATION

= PILE UP

=Uses it’s own PileUpEvtLoopMgr
= Multiple inputs and files.

18

Sy

A
reereer|

Scaling of AthenaMP on
multi-core machines

BrRcKELey Lam

Evts/worker/min ‘

6: Values at np=1,2 effect of Turbo-boost
- ® / [

S Nehalem: 2x quad core X550
C . / 2.67 GHz, 24 Gb

4_ 1
B o AMD: 8x quad core
- O / Opteron 8384-256Gb

3Ca
- AA
- A
- A

2jf‘ '\\\\\\\\\\\\\\\\\

1— Clovertown: 2x quad core Xeon E5345
- 2.33 GHz, 16 Gb
_II.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.l

00 2 4 6 8 101214 16 18 20 22 24 26 28 30 32

Number of procs 19

Ny
A
reereer|
HERKIET I-I

Achievements:

» AthenaMP reduces memory requirement by 35%.

AthenaMP Progress

» Good mp-scaling on current hardware
= Affinity settings exploit CPUs better than Linux CPU scheduling.
» MP-Queue balances workers arrival times.

» Hyper-Threading gives 25-30% gain on throughput.

Remaining Challenges:

» 10 will become limiting factor for multiple workers: Optimize parallel IO that
currently relies fully on OS and requires additional job of merging the output.

» Mitigate NUMA effects on multi-core machines
» Exploit the finer grained parallelism by using threads.

20

PART II:
Performance and optimization
study of Athena

21

Tools Used
" Linux tools:
—sar (1/0 to disk and system-CPU, Memory, 10 loads)
— vmstat: memory performace
— IPM: time spent in 1/O vs computation
— numastat/numactl: reports/controls NUMA memory
settings

" |ntel Performance Tuning Utility (PTU)
— Uses linux kernel module to provide a sampling profiler
— Captures information from hardware counters
available on Intel chips
— Most accurate tool to understand what's going on at
the hardware level
— HUGE number of counters available 29

Initial Assumptions

* Qur initial assumption was that we were
/0 and memory bandwidth limited

we were WRONG

23

Sy

N Size of Atlas Reconstruction

BrRcKELey Lam

100000

accesses

10000
1000
100

10 H

®

«

<

L 4
«®
L4

1 T T T T 1 T T T T 1 T LI B R | T —

™1
1E+4 1E+5 1E+6 1E+7 1E+8

arbitrary memory address (bytes)

Sy

7 iCache (un)friendliness of Athena’

g 100000 0 —— 100 %
(&)
q) S
\
10000 0 . best case:
e 94.5% fit in L3 L3 (4*2 MB)
o 97% for W
"%\/ or gs;tumere L3 (4*3 MB)
> ¢ Atlas Reco
1000 /\\\ - 60 — Percent Usage
(3
\
\\ 50
/ \
100 . \ 40
/ - 30 Penalties
) L1 miss: 6 cycles
10 more realistic: : ~20 | L2 miss: 38 cycles
73.5% fit in kS L3 miss: 200 to 350
/ L3 - | cycles
1 —— / —— —_—— T - 0
1E+4 1/E+5 1E+6 1E+7 1E+8
6.5 % fitin L1 | | 30% fitin L2 arbitrary memory address (bytes)

25

21 |ssues with large OOP Code Bases

 Function calls result in added instructions
— Call and return

— Runtime address resolution (trampolines) required for
position independent code/ shared object cross invocations

*Indirect branches can be more costly
— Freeing & restoring registers for local use

— Setting and reading function arguments

* Virtual function calls (function pointers) increase
indirect call instructions and associated pointer loads

— Virtual functions can't be inlined!
e Atlas code has 2500 shared libraries! 26

Sy

~2 1 Observations from Intel-PTU

* |n Atlas code, functions are on average only 33
instructions long

* Overhead for function calls is anywhere between 6
and 12 instructions

— We can have up to 35% overhead!

e We also see instruction starvation of about 20%

27

Sy

e § Short Term Solutions

« Use social network analysis to identify clusters of active, costly
function call activity

* Order clusters by total time and/or total “cost”

— Split time of functions shared between clusters by call counts
— Calls have a direction

— Utility functions must not be viewed as bridges

- Manually reduce function count in hot clusters by explicit code
Inlining

 Prioritize work by call overhead cost to be gained

* Reduce cross shared object call counts

28

Part lll:
GPU computing in ATLAS:

29

Sy

A\
FrEFeer

Particle tracking in magnetic field simulation.
Solve the differential equation with 4th order RungaKutta Integration

A. Washbrook, P.J. Clark — ATLAS-Group @ University of Edinburgh, UK

Particle Tracking Capabilities

16,000 - —#— 2 GHz Core 2 Duo Intel (CPU)
14.000 - —— AMD Athlon Dual Core 5200+ (CPU)
7
—&— nVidia GeForce 9400M (GPU)
< 12,000 -
g ——nVidia Tesla C1060 (GPU)
QO
()
2
@
Q
S
; =
8}
(a8
—
I I I !
0 1,000 2,000 3,000 4,000 5,000

of Particles

Preliminary results (Tesla C1060): achieved a factor 32 speedup ! 30

THANK YOU!

31

- 1 CPU Architectures used in ATLAS

Intel sub-Nehalem
most of LXPLUS machines:
Voatlas91,Ixplus250,Ixplus251

L CPU
Central Central
Processor Unit Processor Unit
FSB

Networking
(optional)

VO Controller
Hub

CPU-Memory symmetric access

Intel Nehalem
coors.lbl.gov, rainier.Ibl.gov

CPU CPU
Central Central
Processor Unit Processor Unit
% 4

Networking
(optional)

/O Controller

» Hyper Threading ->two logical cores on physical one
* QPIl Quick Path from CPU to CPU and CPU-to-Memory
* Turbo Boost -> dynamic change of CPU-frequency

« CPU-Memory non-symmetric access (NUMA) 32

Evts/worker/min

6

5

4

Event processing for Queue vs. Static @

2
u
u
L 4 [|
u
¢ L 4
’ v
Round-Robin
B Queue
0 2 4 6 8 10 12 14 16

Number of Processes

33

"y

el Workers throughput
- for Queue vs. Round-Robin

Round-robin event distribution Queue event distribution
Evts/worker/min Evts/worker/min

__ &
5— L
B al-
4 B
- 3l
3L i
i 2‘_
2— L
1= 1

:||||||||||||||||||||||||||||||||| Ol v v v b Py g Py g Iy

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Number of procs Number of procs

Balance the arrival times of workers! 34

A
I

_ Event distribution using Queue...

events = multiprocesssing.queue(EvtMax+ncpus) f N
WORKER 0:
events = [0,1,2,3,4,..,99, None,None,None,None] Events: [0, 4, 5,...]
(G /
4 N\
WORKER 1:
evt _loop(evt=events.get(); evt != None): Events: [1, 6, 9,...]
evt_loop mgr.seek (evt nbr) N 7
evt _loop mgr.nextEvent () p
WORKER 2:
Events: [2, 8, 10,...]
(G

WORKER 3:
Events: [3, 7, 11,...]

Balance the arrival times of workers!
Slower worker doesn’t get left behind

35

=1 1 Worker Throughput, No Event Queue @

individual worker
event rates

Evts/Proc/Min|

- 8 core HT machine

1 1 | 11 1 | 1 1 1 | 11 1 | | | 11 1 | L1 1 | 11 1 | |
2 4 6 8 10 12 14 16
NbrProc

36

A
I

-
rerrrrernr |

Worker Throughput with Event Queue 'f\‘

Evts/Proc/Min

I

9

individual worker

overall throughput
without queue

|
2 4 6 8

10 12 14 16
NbrProc

event rates

| overall throughput,
with queue

- 8 core HT machine

37

"y

' A
FrrrrernrT |
l'mt.-:

Evts/Proc/Min

Effect of Affinity Settings @

Workers floating Workers pinned to cpu-cores

=
3
- g
5— s
- B
2 |
(N1 -
4— 4—
3— 3
2 2-
1 1
||||||||\|||‘|||||||||||||||||||| _I\I|III|III|III|III|III|\II|III|I
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16

Number of procs Number of procs

38

- jMaximizing AthenaMP performanc

1. Externally available performance gains (without touching the

athena code)

Architectural gains: HyperThreading, QPIl, NUMA etc.

OS gains: affinity, numactl, io-related, disks, virtual machines, etc.
Compiler, Malloc, etc.

2. Gains from Athena/AthenaMP design improvements:

Faster initialization...
Faster distribution of events to workers...

Faster merging: merging events processed by workers instantly by
one writer on a fly, without waiting for workers to finish...

Faster finalization...
endless ground for improvements :)

39

Sy

A
reereer|

Running AthenaMP jobs.

BrRcKELey Lam

Tests:
/share/mp_genevt_test.py
/share/mp_basic_test.py

Running Reco:
athena.py reco_jobo.py

#example of AthenaMP configuration for reco job
/share/mp_reco_fast.py

Running Job Transform:

csc_atlasG4 trf.py

inputEvgenFile=evgen-105145.pool.root

outputHitsFile=HITS.pool.root maxEvents=2 skipEvents=1 randomSeed=3945
geometryVersion=ATLAS-GEO-10-00-00 physicsList=QGSP_BERT
conditionsTag=OFLCOND-SIM-BS7T-02 IgnoreConfigError=False AMITag=s765

40

Sy

A
reereer|

The scripts for mp-scaling

measurements in Athena

mpMon.py - mp-scaling measurement script that runs automatically athenaMP

and collects system data using sar (CPU, 10, Memory) + numa activity during the run;
and extracts worker-time-statistics from the parent and workers logs. The script allows
to vary numa bindings, affinity settings.

$> mpMon.py --jobo 'athena.py --nprocs=$NPROCS rdotoesd.py -¢c EvtMax=$MAXEVT" \
--np [1,2,4,8,12,16,18] --ne 100 --comments ""HTon.TBon"™ --doPlots --output mpMon.log

mjMon.py - mp-scaling for athena multi jobs (Athena MJ), similar to mpMon.py

$> mjMon.py —jobo ‘athena.py —c EviMax=$MAXEVT rdotoesd.py’ \
-np [1,2,4,8,12,16,18] —ne 100 —comments “Hton.Thon” —doPlots —output mpMon.log

#mp-scaling of the job-transform

$>mjMon.py --np [1,2,4] --ne 100 --se 10 --output mjMon.log --comments “trf* --doPlots \

--jobo 'csc_atlasG4_trf.py inputEvgenFile=Evt.pool.root outputHitsFile=HITS.pool.root maxEvents=SMAXEVT \
skipEvents=$SKIPEVT randomSeed=54298752 geometryVersion=ATLAS-GEO-08-00-01 physicsList=QGSP_BERT jobConfig=NONE’

both scripts come with Control/AthenaMP package.

MP-scaling reports of rdotoesd for both AthenaMP and AthenaMJ on different

machines here:
https://docs.google.com/leaf?id=0B1Yjr6DOl_RaOTMOOTUyYNGItMjk4NiOONmMRmMLTg4NjctMDc5ZWRmM2I0NDA5&hI=en 4 1

