
Multiprocessing in CERN-ATLAS

Sebastien Binet2, Paolo Calafiura1, Charles Leggett1,
Wim Lavrijsen1, David Levinthal3, Yushu Yao1

1Lawrence Berkeley National Lab, 2LAL, 3Intel

Scalability and the Real World:
Lessons Learned Optimizing ATLAS Reconstruction

Performance on Multi-Core CPUs.

ICCS-2011 – January 26, 2011 –Berkeley, CA

Mous Tatarkhanov1

ATLAS - Prominent High Energy Experiment at LHC, CERN
 New discoveries in Fundamental Physics
 Large rate of data:

100 million electronic channels
200 proton-proton collision events/s -> 500MB/s

 ~10000 CPU nodes housed at CERN and around the world

Introduction to ATLAS

L = 45 m
D = 25 m
M = 7000 tons

Data = 5 PBytes/year
2500 Scientists

ATLAS Detector Collision Event

2

ATLAS software
ATHENA - ATLAS software for Reconstruction, Simulation and Analysis.
 Highly robust OO framework based on HEP GAUDI architecture
 Large – 4000 components, 2500 shared libraries
More than 300 active software developers
 Configured and Steered by Python front-end - athena.py
 High application size ~1.5 Gb of real memory for Reconstruction.

Transient
Event
Store

Converter

Algorithm

StoreGate
Svc

Persistency
Service

Data
Files

Algorithm

StoreGate
Svc

Persistency
Service

Data
Files

Transient
Detector
Store

Message
Service

JobOptions
Service

Particle Prop.
Service

Other
Services

Histogram
Service

Persistency
Service

Data
Files

Transient
Histogram
Store

ConverterConverterEvent
Loop Mgr

Auditors
Scripting
Service

Sequencer

Application
Manager

3Single-threaded design !

2 cores 4 cores
8 cores

12 cores

Typical system: [Intel-Nehalem, 8 CPU-cores/box, 2Gb/core, ~2.5Ghz]

 Upgrades: [Intel-Sandybridge, 12-24 CPU-cores/box, 2-3Gb/core, ~2.5Ghz]

 In future: [32 and more CPU-cores/ box , 3 Gb/core, ~2.5Ghz]

ATLAS multicore hardware

1 2

1 2 3 4 5 6 7 8

1 2 3 4 5 6

7 8 9 10 11 12

MANY
CORES

32 and
more

Efficient exploitation of multiple cores on single box is essential!

1 2 3 41 2 3 4

4

HyperThreading
Enables 2 logical cores

per 1 physical core

Multicore Era

power wall

Ghz Era

5

PART I:
Harnessing multi-core systems in ATLAS

What to expect from parallel solution?

1. Sharing resources (memory and IO)
• Sharing Large part of process memory by cores.
• Sharing IO and Persistent to Transient

conversions

2. Scalability (parallel event processing throughput)
• Close to linear scaling on many-core machines
• Explore Hyper-Threaded CPU cores.

3. Transparency
• User easily exploits multiple cores
• Minimum changes to the existing code base 4

7

4. Configurability
• Easy and robust control of AthenaMP.

5. Generalization
• Works for all Atlas domains:

reconstruction, simulation, digitization, pileup

• Works for all Athena run types:
jobos, job-trfs

• Works for all i/o data types and storages:
data types: bs, raw, rdo, esd, aod, tag, histos, perfmon, monitor

storages: pool, root-storage, root-collections, root, custom-types.

What to expect from parallel solution?

8

 Jobs in parallel (job parallelism)
 Simplest, no code rewriting
 No sharing of resources

 Events in parallel (event parallelism)
Minimal changes to the existing code
 Share Memory (code, configuration, detector data, etc.)
 Requires: Parallelization of I/O

 Sub-event parts in parallel (fine-grained parallelism)
 Parallelize tasks and “regions of interest” within Atlas
domain and event using multithreaded approach.

Athena MJ

Athena MP

Possible Parallelization Approaches

Athena MT , GPU (future plans)

Athena jobs in parallel

end

for i in range(4):
$> athena.py -c “EvtMax=25; SkipEvents=$i*25” Jobo.py

co
re

-0

JOB 0:
Events: [0,1,…,24]

co
re

-1

JOB 1:
Events: [25,…,49]

co
re

-2

JOB 2:
Events: [50,…,74]

co
re

-3

JOB 3:
Events: [75,…,99]

PARALLEL: 4 independent jobs

start

endstart

endstart

endstart

init

init

init

init

Athena MJ

9

end

Input
Files

Output Files

OS-fork merge

$> athena.py --nprocs=4 -c EvtMax=100 Jobo.py

firstEvnts

co
re

-0 WORKER 0:
Events: [0, 4, 8,…96]

co
re

-1

WORKER 1:
Events: [1, 5, 9,…,97]

co
re

-2 WORKER 2:
Events: [2, 6, 10,…,98]

co
re

-3 WORKER 3:
Events: [3, 7, 11,…,99]

output-
tmp
files

output
tmp
files

Output
tmp
files

Output
tmp files

init

Minimize the
consumed
memory!

PARALLEL: workers event loopSERIAL:
parent-init-fork

SERIAL:
parent-merge and finalize

AthenaMP – transparent approach
to process events in parallel

WORKER - forked clone of serial process
 Master process memory is used by workers

 Processes see the same physical memory while reading 10

How AthenaMP Works?
1. Initialize serial version of Athena.

 Wrap athena EventLoopMgr with mp version during initialization.

 Configure athena job, initialize athena, load necessary libraries.

2. Create pool of event processing Workers

 Fork workers using multiprocessing package in python

 Processes see the same physical memory initially

 New allocations and touched pages created in private memory

3. Merge Output:

 Input: Each worker processes separate set of events from common event file.

 Output: Each worker produces separate set of output files.

WORKER 1:
WORKER 1:

WORKER 1:
WORKER 1:

Athena FORK

WORKER = Copy-on-Write forked clone

11

1. Resource sharing in AthenaMP

AthenaMP 0.5 Gb physical memory shared per process

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

Gb

Number of Processes

Memory per process

AthenaMP

AthenaMJ

0.5Gb

Shared

12

Platform:
Intel Nehalem X5550
Cores: 8 (2 x Quad)
Mem: 24 Gb

8 physical cores

2. Scaling of AthenaMP and AthenaMJ

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16

Evts/min

Number of Processes

Total Event Throughput

AthenaMP

AthenaMJ

Ideal Scaling

Hit the memory limit -

swapping starts

13

Platform:
Intel Nehalem X5550
Cores: 8 (2 x Quad)
Mem: 24 Gb

8 physical cores

Gain from Hyper-Threading

AthenaMP total event throughput

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

Evts/min

Number of Processes

AthenaMP-HT-on
AthenaMP-HT-off

25%

increase

14

Platform:
Intel Nehalem X5550
Cores: 8 (2 x Quad)
Mem: 24 Gb

hyper-threading effect

8 physical cores

Confining workers to cpu-cores

Affinity: pinning each processes to a separate CPU-core

Floating: each process scheduled by OS; frequent task switching

0

1

2

3

4

5

6

0 2 4 6 8 10

Evts/proc/min

Number of Processes

Best Affinity

Floating

ideal

40 %

increase

15

Turn any standard ATLAS job into mp-version by:

athena.py --nprocs=4 rdotoesd.py …

reco_trf.py --athenaopts=“--nprocs=2" …

3. Transparency of AthenaMP

16

4. Configurability of AthenaMP
Configuration of AthenaMP is done using the jobproperties:

from AthenaMP.AthenaMPFlags import jobproperties

Various switches and properties should allow user-friendly control.

AthenaMP/python/AthenaMPFlags.py

from AthenaMP.AthenaMPFlags import jobproperties as jps

mpjp = jps.AthenaMPFlags

mpjp.EventsBeforeFork = 0

mpjp.AffinityCPUList = [0,1,2,3,4,5,6,7]

mpjp.TmpDir = “/tmp/tmp_dir”

mpjp.doFastMerge = True

mpjp.doRoundRobin = False

more will be added as needed

example: AthenaMP/share/mp_rdotoesd.py 17

5. Challenges of Generalizing AthenaMP

 RECONSTRUCTION
Job option recos

Job transform recos, chained job transforms (rdo2esd2aod-tag)

Large nbr. of different output files

Problems with PoolFileCatalog

ByteStream-RECONSTRUCTION
 Seeking didn’t work

 Problems with PoolFileCatalog

SIMULATION
Random generator seeding

Outside framework files

 DIGITIZATION

 PILE UP
Uses it’s own PileUpEvtLoopMgr

Multiple inputs and files.
18

Scaling of AthenaMP on
multi-core machines

Nehalem: 2x quad core X550
2.67 GHz, 24 Gb

Clovertown: 2x quad core Xeon E5345
2.33 GHz, 16 Gb

Evts/worker/min

Number of procs

AMD: 8x quad core
Opteron 8384-256Gb

Values at np=1,2 effect of Turbo-boost

19

AthenaMP Progress
Achievements:

 AthenaMP reduces memory requirement by 35%.

 Good mp-scaling on current hardware

 Affinity settings exploit CPUs better than Linux CPU scheduling.

 MP-Queue balances workers arrival times.

 Hyper-Threading gives 25-30% gain on throughput.

Remaining Challenges:
 IO will become limiting factor for multiple workers: Optimize parallel IO that

currently relies fully on OS and requires additional job of merging the output .

 Mitigate NUMA effects on multi-core machines

 Exploit the finer grained parallelism by using threads.

20

21

PART II:
Performance and optimization

study of Athena

Tools Used
 Linux tools:

– sar (I/O to disk and system-CPU, Memory, IO loads)
– vmstat: memory performace
– IPM: time spent in I/O vs computation
– numastat/numactl: reports/controls NUMA memory

settings

 Intel Performance Tuning Utility (PTU)
– Uses linux kernel module to provide a sampling profiler
– Captures information from hardware counters

available on Intel chips
– Most accurate tool to understand what's going on at

the hardware level
– HUGE number of counters available 22

23

Initial Assumptions

• Our initial assumption was that we were
I/O and memory bandwidth limited

we were WRONG

24

1E+4 1E+5 1E+6 1E+7 1E+8

1

10

100

1000

10000

100000

L1 (32K)L2 (246 K)L3 (4*2 MB)L3 (4*3 MB)

Atlas RecoPercent Usage

arbitrary memory address (bytes)

a
c
c
e
s
s
e
s

Size of Atlas Reconstruction

25

1E+4 1E+5 1E+6 1E+7 1E+8

1

10

100

1000

10000

100000

0

10

20

30

40

50

60

70

80

90

100

L3 (4*2 MB)

L3 (4*3 MB)

Atlas Reco

Percent Usage

arbitrary memory address (bytes)

a
c
c
e

s
s
e

s

p
e

rc
e

n
t

L
3

C

a
c

h
e

N
e

h
a

l
e

m

Penalties

L1 miss: 6 cycles

L2 miss: 38 cycles

L3 miss: 200 to 350

cycles

best case:

94.5% fit in L3
97% for Westmere

more realistic:

73.5% fit in

L3

L
2

C

a
c

h
e

L
1

C

a
c

h
e

6.5 % fit in L1 30% fit in L2

Cache (un)friendliness of Athena

26

Issues with large OOP Code Bases

• Function calls result in added instructions

– Call and return

– Runtime address resolution (trampolines) required for
position independent code/ shared object cross invocations

•Indirect branches can be more costly

– Freeing & restoring registers for local use

– Setting and reading function arguments

• Virtual function calls (function pointers) increase
indirect call instructions and associated pointer loads

– Virtual functions can't be inlined!

• Atlas code has 2500 shared libraries!

27

Observations from Intel-PTU

• In Atlas code, functions are on average only 33
instructions long

• Overhead for function calls is anywhere between 6
and 12 instructions

– We can have up to 35% overhead!

• We also see instruction starvation of about 20%

28

Short Term Solutions

• Use social network analysis to identify clusters of active, costly

function call activity

• Order clusters by total time and/or total “cost”

– Split time of functions shared between clusters by call counts

– Calls have a direction

– Utility functions must not be viewed as bridges

• Manually reduce function count in hot clusters by explicit code

inlining

• Prioritize work by call overhead cost to be gained

• Reduce cross shared object call counts

29

Part III:
GPU computing in ATLAS:

30

Particle tracking in magnetic field simulation.
Solve the differential equation with 4th order RungaKutta Integration
A. Washbrook, P.J. Clark – ATLAS-Group @ University of Edinburgh, UK

Preliminary results (Tesla C1060): achieved a factor 32 speedup !

THANK YOU!

31

CPU Architectures used in ATLAS
Intel Nehalem

coors.lbl.gov, rainier.lbl.gov

Intel sub-Nehalem
most of LXPLUS machines:

Voatlas91,lxplus250,lxplus251

CPU-Memory symmetric access
• Hyper Threading ->two logical cores on physical one

• QPI Quick Path from CPU to CPU and CPU-to-Memory

• Turbo Boost -> dynamic change of CPU-frequency

• CPU-Memory non-symmetric access (NUMA)
32

33

Event processing for Queue vs. Static

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

Evts/worker/min

Number of Processes

Round-Robin

Queue

Round-robin event distribution Queue event distribution

Workers throughput
for Queue vs. Round-Robin

Balance the arrival times of workers!

Number of procs Number of procs

Evts/worker/min Evts/worker/min

34

Event distribution using Queue…

co
re

-0

WORKER 0:
Events: [0, 4, 5,…]

co
re

-1
WORKER 1:
Events: [1, 6, 9,…]

co
re

-2

WORKER 2:
Events: [2, 8, 10,…]

co
re

-3

WORKER 3:
Events: [3, 7, 11,…]

events = multiprocesssing.queue(EvtMax+ncpus)
events = [0,1,2,3,4,…,99, None,None,None,None]

…

evt_loop(evt=events.get(); evt != None):
evt_loop_mgr.seek (evt_nbr)
evt_loop_mgr.nextEvent ()

Balance the arrival times of workers!
Slower worker doesn’t get left behind

35

Worker Throughput, No Event Queue

individual worker
event rates

overall job rate

- 8 core HT machine

36

Worker Throughput with Event Queue

overall throughput
without queue

individual worker
event rates

overall throughput,
with queue

- 8 core HT machine

37

Workers floating Workers pinned to cpu-cores

Effect of Affinity Settings

Number of procs Number of procs

38

Maximizing AthenaMP performance
1. Externally available performance gains (without touching the

athena code)

• Architectural gains: HyperThreading, QPI, NUMA etc.

• OS gains: affinity, numactl, io-related, disks, virtual machines, etc.

• Compiler, Malloc, etc.

2. Gains from Athena/AthenaMP design improvements:

• Faster initialization…

• Faster distribution of events to workers...

• Faster merging: merging events processed by workers instantly by
one writer on a fly, without waiting for workers to finish…

• Faster finalization…
endless ground for improvements :)

39

Tests:

/share/mp_genevt_test.py

/share/mp_basic_test.py

Running Reco:

athena.py –nprocs=$ncpus reco_jobo.py

#example of AthenaMP configuration for reco job

/share/mp_reco_fast.py

Running Job Transform:

===

csc_atlasG4_trf.py --athenaopts="--nprocs=2"

inputEvgenFile=evgen-105145.pool.root

outputHitsFile=HITS.pool.root maxEvents=2 skipEvents=1 randomSeed=3945

geometryVersion=ATLAS-GEO-10-00-00 physicsList=QGSP_BERT

conditionsTag=OFLCOND-SIM-BS7T-02 IgnoreConfigError=False AMITag=s765

===

Running AthenaMP jobs.

40

The scripts for mp-scaling
measurements in Athena

mpMon.py - mp-scaling measurement script that runs automatically athenaMP

and collects system data using sar (CPU, IO, Memory) + numa activity during the run;

and extracts worker-time-statistics from the parent and workers logs. The script allows

to vary numa bindings, affinity settings.

$> mpMon.py --jobo 'athena.py --nprocs=$NPROCS rdotoesd.py -c EvtMax=$MAXEVT' \

--np [1,2,4,8,12,16,18] --ne 100 --comments "HTon.TBon" --doPlots --output mpMon.log

mjMon.py - mp-scaling for athena multi jobs (Athena MJ), similar to mpMon.py

$> mjMon.py –jobo „athena.py –c EvtMax=$MAXEVT rdotoesd.py‟ \

-np [1,2,4,8,12,16,18] –ne 100 –comments “Hton.Tbon” –doPlots –output mpMon.log

#mp-scaling of the job-transform
$> mjMon.py --np [1,2,4] --ne 100 --se 10 --output mjMon.log --comments “trf“ --doPlots \

--jobo 'csc_atlasG4_trf.py inputEvgenFile=Evt.pool.root outputHitsFile=HITS.pool.root maxEvents=$MAXEVT \

skipEvents=$SKIPEVT randomSeed=54298752 geometryVersion=ATLAS-GEO-08-00-01 physicsList=QGSP_BERT jobConfig=NONE‟

both scripts come with Control/AthenaMP package.

MP-scaling reports of rdotoesd for both AthenaMP and AthenaMJ on different

machines here:
https://docs.google.com/leaf?id=0B1Yjr6DOl_RaOTM0OTUyNGItMjk4Ni00NmRmLTg4NjctMDc5ZWRmM2I0NDA5&hl=en 41

