Cosmological Simulations on Large, Accelerated Supercomputers

Adrian Pope (LANL)
ICCS Workshop
27 January 2011

People

- LANL: Jim Ahrens, Lee Ankeny, Suman Bhattacharya, David Daniel, Pat Fasel,
 Salman Habib, Katrin Heitmann, Zarija Lukic, Pat McCormick, Jon Woodring
- ORNL: Chung-Hsing Hsu
- Berkeley: Jordan Carlson, Martin White
- Virginia Tech: Paul Sathre
- IBM: Mike Perks
- Aerospace: Nehal Desai

The Survey Challenge

Scaling of astronomical surveys

- Driven by solid state technology
 - CCD pixels in focal plane
- Data volume/rate scaling similar to Moore's law
- Huge investment by scientists and funding agencies

Transformational effect on demands of theoretical modeling for cosmology

- ~10% now, semi-analytic, perturbation theory
- ~1% soon, numerical theory (eg. simulations)

Precise theoretical predictions to match survey observations

- Many related probes: large-scale structure, weak lensing, clusters
- Maximize return on investment in surveys

SDSS2000-2008
1/4 sky

Pan-STARRS, DES, etc.

LSST (image from DLS)
2018-2028
1/2 sky (multiple scans)

Scaling

HACC (Hardware Accelerated Cosmology Code)

Throughput

- Dynamic range
 - Volume for long wavelength modes
 - Resolution for halos/galaxy locations
- Repeat runs
 - Vary initial conditions
 - Sample parameter space, emulators for observables (Coyote Universe, Cosmic Calibration)
- Scale to current and future supercomputers (many MPI ranks, even more cores)

Flexibility

- Supercomputer architecture (CPU,Cell, GPGPU, BG)
- Compute intensive code takes advantage of hardware
- Bulk of code easily portable (MPI)

Development/maintenance

- Few developers
- Simpler code easier to develop, maintain, and port to different architectures

On-the-fly analysis, data reduction

Reduce size/number of outputs, ease file system stress

Collisionless Gravity

$$\frac{\partial f}{\partial t} + \dot{\mathbf{x}} \cdot \frac{\partial f}{\partial \mathbf{x}} - \nabla \phi \cdot \frac{\partial f}{\partial \mathbf{p}} = 0, \quad \mathbf{p} = a^2 \dot{\mathbf{x}}$$

$$\nabla^2 \phi = 4\pi G a^2 (\rho(\mathbf{x}, t) - \rho_b(t)), \quad \rho(\mathbf{x}, t) = a^{-3} m \int d^3 \mathbf{p} f(\mathbf{x}, \dot{\mathbf{x}}, t)$$

- Evolution of over-density perturbations in smooth, expanding background (Vlasov-Poisson)
- Gravity has infinite extent and causes instabilities on all scales
- N-Body
 - Tracer particles for phase-space distribution
 - Self-consistent force
 - Symplectic integrator

Force

Long-range (PM = particle-mesh)

- Deposit particles on grid (CIC)
- Distributed memory FFT (Poisson)
- Pros: fast, good error control
- Cons: uses memory

Short-range

- Inter-particle force calculation
- Several short steps per long step
- Limited spatial extent
 - Local n² comparisons
- Several choices for implementations
 - Tree solver (TreePM: CPU)
 - Direct particle-particle (P³M: Cell, OpenCL)

Spectral smoothing at handover

More flexible than real-space stencils (eg. TSC)

UNCLASSIFIED

FFT Decomposition

- Compute:Communication::Volume:Area
- Independent of particle decomposition
 - Buffers to re-arrange
- Roadrunner 1D tests
 - (Weak) scaling up to 9000³, up to 6000 MPI ranks
 - Probably about as far as 1D will go (thin slabs)
- Analysis: 2D should work for likely exascale systems
 - 2D FFT is under testing
- Not as critical to calculate on accelerated hardware
 - Network bandwidth limited
 - Still relatively fast and accurate force calculation

1D slab

2D pencil

3D

UNCLASSIFIED

Particle Overloading

- 3D spatial decomposition (max volume:area)
 - Large-scale homogeneity = load balancing
- Cache nearby particles from neighbors
- Update cached particles like others
 - Move in/out of sub-volumes
 - Skip short-range update at very edge to avoid anisotropy
- Can refresh cache (error diffusion)
 - Not every (long) time step
- Network communication
 - Mostly via FFT
 - Occasional neighbor communication
 - None during short-range force calculation
- No MPI development for short-range force

Architecture

Architecture

Modular Code

- Decomposition and communication is independent of hardware (MPI)
- Particles class
 - Particle/grid deposit for long-range force (CIC, CIC⁻¹)
 - Particle position update (easy)
 - Short-range force, velocity update (bottleneck)
 - Use algorithms and data structures to suite hardware
 - Fixed set of public methods

Accelerators

■ P³**M**

- Code development
 - Simple data structures
 - Easier to avoid branching statements, etc.
- Exact calculation can be a reference for approximate methods
- Chaining mesh: sort particles into buckets, ~force-length

Memory hierarchy, coherence

- Asynchronous transfers
 - Overlap movement and computation
 - No competing writes to main memory

Concurrent execution

Organize into independent work units

Cell (LANL Roadrunner)

Memory

- Balanced between CPU blade and Cell blade
- Particles in Cell memory
- Grid over PCle
- Multi-buffer by hand to SPU local store

Heterogeneous

- PPU: communication, sorting, low flop/byte
- SPU: high flop/byte

Concurrency

Scheduled by hand

Slide 17

UNCLASSIFIED

OpenCL

Memory

- Possibly (probably?) unbalanced memory
- Particles in CPU main memory
 - CPU does low flop/byte operations
- Stream slabs through GPU memory
 - Pre-fetch
 - Asynchronous result updates

Concurrency

- Data-parallel kernel execution
- Many independent work units per slab
 - Many threads
 - Efficient scheduling

PM Science

First Roadrunner Universe (RRU) Science Runs

Roadrunner (LANL)

- 3060 nodes
 - 2x dual core Opterons, 10% flops
 - 4x Cell, 90% flops (8 vector processors per Cell)
- 1 petaflops double precision, 2 petaflops single precision

Simulation parameters

- 750 Mpc/h side length
- 64 billion particles (resolve IGM Jeans mass)
- ~100 kpc/h (resolve IGM Jeans length)
- 9 realizations (single cosmology)
- 1000 nodes (1/3)
- ~Day per simulation

Analysis

- Density along "skewers" calculated on-the-fly
- Cross-correlations along nearby lines-of-sight in post processing

Ly-α BAO studies

- BOSS: Cross-correlation along pairs of QSO
- DM only simulation, some gas physics in post processing
- Can test noise/error scenarios
- White et al. 2010 (ApJ, arXiv:0911.5341)

 ${\sf RA=201.34023,\ DEC=\ 3.55996,\ MJD=52375,\ Plate=\ 852,\ Fiber=205}$

UNCLASSIFIED

UNCLASSIFIED

Session Edit View Bookmarks Settings Help Initializer will use 6048 processors. 6048^3 grid Decomposing into slabs.....done sigma_8 = 0.800000, target was 0.800000 redshift: 211.000000; growth factor = 0.006321; derivative = 9.755618 Min and max value of density in k space: -306.01 394.242 Average value of density in k space: 4.91044e-07 [heitmann@rr-fe4 2PPN 6048 NEW]\$ showq active jobs-----JOBID STATE PROCS REMAINING STARTTIME USERNAME 17231 heitmann Running 12096 7:02:48 Thu Sep 24 15:27:59 12096 of 12112 processors in use by local jobs (99.87%) 1 active job 3021 of 3028 nodes active eligible jobs-----JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME 0 eligible jobs blocked jobs-----JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME 0 blocked jobs Total job: 1 [heitmann@rr-fe4 2PPN_6048_NEW]\$ showq active jobs-----STARTTIME JOBID REMAINING USERNAME STATE PROCS 17231 Running 12096 7:01:07 Thu Sep 24 15:27:59 heitmann 1 active job 12096 of 12112 processors in use by local jobs (99.87%) 3021 of 3028 nodes active eligible jobs-----JOBID WCLIMIT USERNAME STATE PROCS QUEUETIME 0 eligible jobs blocked jobs-----JOBID USERNAME STATE PROCS WCLIMIT QUEUETIME 0 blocked jobs Total job: 1 [heitmann@rr-fe4 2PPN_6048_NEW]\$ [Shell

★ heitmann@rr-fe4:2PPN_6048_NEW - Shell - Konsole <2>

P³M Commissioning

Cell

Code comparison (256³) < 1% agreement</p>

Tests at scale

- Roadrunner
 - 4 Gpc/h side length
 - 64 billion particles
 - 1000 nodes (1/3)
- Cerrillos (360 nodes, open network)
 - 2 Gpc/h side length
 - 8 billion particles
 - 128 nodes
- Both
 - ~5-10 kpc/h force resolution
 - 500x3 time steps
 - ~Week (+queue)
- Verifying results

UNCLASSIFIED Slide 24

Cell

OpenCL

Port of Particles class

- Summer student project
- Quicker/easier development than Cell

SC10 demo

- Calculation in real time (small problem size)
- Mix of NVIDIA and ATI hardware
- Interactive 3D visualization in real time

Initial performance not awful

- Fast on NVIDIA
- Improving ATI performance

Kernels

- Single kernel with optional vectorization?
- Tune kernels for each hardware?
- Settle data structures

UNCLASSIFIED

Future

Cell

- Debugging speed improvements (3x faster)
- Clean up code from beta to 1.0

OpenCL

- Improve code from demo to production
- Should soon have access to a machine large enough for real tests

Local tree solver (CPU)

- Data structures in place (threaded tree)
- Need to implement force solve walk

Early Science Program on Argonne BG/Q

- OpenMP thread some operations (planning)
- P³M? Tree? Both?

Baryon physics

Exploring methods

