
Performance Evaluation of the
48-core SCC Processor

Aparna Chandramowlishwaran, Richard Vuduc

– Georgia Institute of Technology

Kamesh Madduri

– Lawrence Berkeley National Laboratory

LBNL ICCS 2011 Workshop

aparna@cc.gatech.edu

Friday, January 28, 2011

mailto:aparna@cc.gatech.edu
mailto:aparna@cc.gatech.edu

Performance Evaluation of the
48-core SCC Processor’s
On-chip Interconnect

Aparna Chandramowlishwaran, Richard Vuduc

– Georgia Institute of Technology

Kamesh Madduri

– Lawrence Berkeley National Laboratory

LBNL ICCS 2011 Workshop

aparna@cc.gatech.edu

Friday, January 28, 2011

mailto:aparna@cc.gatech.edu
mailto:aparna@cc.gatech.edu

Talk Summary

We characterize the SCC on-chip interconnection network with
micro-benchmarks

Observed point-to-point latency, bandwidth

Performance model

We present new collective communication algorithms for the
SCC

Broadcast 22x faster than prior approach

Reduce 6.4x faster than prior approach

SCC access to Georgia Tech provided through Intel’s MARC
(Many-Core Applications Research Community) initiative

Friday, January 28, 2011

Outline	

Overview of Intel’s experimental
Single-chip Cloud Computer (SCC)

Interconnection Network and Messaging

Microbenchmarks and Observations

Collective Communication Algorithms

Conclusions

Friday, January 28, 2011

Single-chip Cloud
Computer

Experimental 48-core CPU

Fine-grained power management

Enables exploration of alternative
‘scalable’ programming models by
removing hardware cache coherence

Source: Justin Rattner, “Intel SCC” announcement

Friday, January 28, 2011

!"#

!"#

!"#

!"#

$%&"#
"'()#*%#

$%&"#
"'()#*&#

!$+#
,-.+#

/01#
0%-.+#

/01#
0%-.+#

2'34)(#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2#

2 P54C cores per tile

4 Integrated DDR3 memory controllers

2D mesh interconnect, 64 GB/s link bandwidth

8 KB globally addressable “Message Passing Buffer” per core

16 KB L1, 256 KB L2 cache per core

Friday, January 28, 2011

Outline	

Overview of Intel’s experimental Single-chip
Cloud Computer (SCC)

Interconnection Network and
Messaging

Microbenchmarks and Observations

Collective Communication Algorithms

Conclusions

Friday, January 28, 2011

SCC Memory Hierarchy

!"#$

%&'($)$ %&'($*$ %&'($+,$-*$-.$ -*$-.$ -*$-.$

/01!$2&3456789$

:$:$:$

"'7;<=($
>6<'(?$$

2@&=$5<56(45&6('(@=9$

!"#$!"#$

Friday, January 28, 2011

SCC Memory Hierarchy

!"#$

%&'($)$ %&'($*$ %&'($+,$-*$-.$ -*$-.$ -*$-.$

/01!$2&3456789$

:$:$:$

"'7;<=($
>6<'(?$$

2@&=$5<56(45&6('(@=9$

!"#$!"#$

./$A(B6$7@=('5&@@(5=$

Friday, January 28, 2011

Synchronous two-sided
messaging

1. Copy: local memory to MPB

!"#$

!%&'$(%)*+,-$

!"#$

./01$./01$

23$

Friday, January 28, 2011

Synchronous two-sided
messaging

2: Signal: data ready

!"#$

!%&'$(%)*+,-$

!"#$

./01$./01$

23$

Friday, January 28, 2011

Synchronous two-sided
messaging

3: Copy: remote MPB to local MPB

!"#$

!%&'$(%)*+,-$

!"#$

./01$./01$

23$

Friday, January 28, 2011

4: Signal: Acknowledgement

!"#$

!%&'$(%)*+,-$

!"#$

./01$./01$

23$

Synchronous two-sided
messaging

Friday, January 28, 2011

Programming models
for SCC

Use one-sided get/put, expose MPB to the
programmer

expert programmer, fine-grained control

Two-sided synchronous send/recv with messaging
details hidden from programmer

MPI-like

RCCE: communication environment developed
by Intel

Supports both these models

Friday, January 28, 2011

Goals and Contributions

Evaluation of the on-chip interconnection
network

Microbenchmarks to identify cost of various
messaging building blocks

Performance model from observations

Design optimized collective communication
schemes, assuming a high-level “MPI”-like
programmer interface

Friday, January 28, 2011

Outline	

Overview of Intel’s experimental Single-chip
Cloud Computer (SCC)

Interconnection Network and Messaging

Microbenchmarks and Observations

Collective Communication Algorithms

Conclusions

Friday, January 28, 2011

Experimental Setup

Configuration: Cores at 533 MHz, Router at 800
MHz, DDR3 800 memory

L2 disabled

DRAM to MPB copy step not timed

8KB/core limit on on-chip messaging

Pipeline longer messages

Friday, January 28, 2011

MPB read bandwidth ~ 4x lower than L1 bandwidth

MPB read

L1-cache read

Local MPB read performance

Message size (bytes)

La
te

nc
y

(n
an

os
ec

on
ds

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

32 256 512 1024 2048

Friday, January 28, 2011

Local MPB write performance

Writes to local MPB ~ 1.4x more expensive than read

Message size (bytes)

La
te

nc
y

(n
an

os
ec

on
ds

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

32 256 512 1024 2048

MPB read

L1-cache read

MPB write

Friday, January 28, 2011

Remote MPB read vs Message size

Remote read time increments proportional to number of hops

Message size (bytes)

La
te

nc
y

(n
an

os
ec

on
ds

)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

32 256 512 1024 2048

farthest tile

neighboring tile

same tile

Friday, January 28, 2011

Remote MPB read/write vs Hop count

64 B message. Slope gives router latency: ~ 5 ns.

Number of hops

Ti
m

e
(n

an
os

ec
on

ds
)

150

200

250

300

350

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 2 3 4 5 6 7 8

Write

Read

Friday, January 28, 2011

Measuring Bisection
bandwidth

2048 B message, comparison to

“no contention” case

No contention

19.93 microseconds 19.2 microseconds

Friday, January 28, 2011

Performance Model &
Observations

Local MPB read

Remote MPB read

Local MPB write

Remote MPB write

(# of cache lines) * 105 ns

(# of cache lines) * (105 ns + (# of hops)
* 5 ns)

(# of cache lines) * 145 ns

(# of cache lines) * (145 ns + (# of hops)
* 5 ns)

Friday, January 28, 2011

Observed Bandwidths
(MB/s)

Local MPB read

Remote MPB (8-hop) read

Local MPB write

Remote MPB (8-hop) write

L1

DRAM/core (1 core)

DRAM/core (12 cores)

305

220

220

173

1220

160

130

Friday, January 28, 2011

Outline	

Overview of Intel’s experimental Single-chip
Cloud Computer (SCC)

Interconnection Network and Messaging

Microbenchmarks and Observations

Collective Communication Algorithms

Conclusions

Friday, January 28, 2011

Designing collectives

Performance model guides design of optimal
scheme

Two case studies:

Broadcast

Reduce

Friday, January 28, 2011

Broadcast algorithm Naive: put-based approach

Friday, January 28, 2011

Broadcast algorithm Core 0 writes to remote MPB’s

Friday, January 28, 2011

Broadcast algorithm Core 0 writes to remote MPB’s

Friday, January 28, 2011

Broadcast algorithm Core 0 writes to remote MPB’s

Friday, January 28, 2011

Broadcast algorithm Core 0 writes to remote MPB’s

Friday, January 28, 2011

Broadcast algorithm Core 0 writes to remote MPB’s

p-1 steps

Friday, January 28, 2011

Parallel broadcast
algorithm

All cores fetch data from core 0’s MPB

One step, possible
contention over the

network

Friday, January 28, 2011

Network contention doesn’t seem to hurt broadcast performance

Broadcast parallel scaling

Number of cores

Ti
m

e
(m

ic
ro

se
co

nd
s)

0

100

200

300

400

500

600

700

0 2 4 12 24 36 48

Naive

Parallel

22x speedup

Friday, January 28, 2011

1
0

3
2

5
4

7
6

9
8

11
10

13
12

15
14

17
16

19
18

21
20

23
22

25
24

27
26

29
28

31
30

33
32

35
34

37
36

39
38

41
40

43
42

45
44

47
46

0 1 2 46 47. . .3

0 2 46

4 5

4 . . .

Friday, January 28, 2011

1
0

3
2

5
4

7
6

9
8

11
10

13
12

15
14

17
16

19
18

21
20

23
22

25
24

27
26

29
28

31
30

33
32

35
34

37
36

39
38

41
40

43
42

45
44

47
46

0 1 2 46 47. . .3

0 2 46

4 5

4

0 4

. . .

0

. . .

Friday, January 28, 2011

1
0

3
2

5
4

7
6

9
8

11
10

13
12

15
14

17
16

19
18

21
20

23
22

25
24

27
26

29
28

31
30

33
32

35
34

37
36

39
38

41
40

43
42

45
44

47
46

0 1 2 46 47. . .3

0 2 46

4 5

4

0 4

. . .

0

0

8

. . .

. . .

Friday, January 28, 2011

1
0

3
2

5
4

7
6

9
8

11
10

13
12

15
14

17
16

19
18

21
20

23
22

25
24

27
26

29
28

31
30

33
32

35
34

37
36

39
38

41
40

43
42

45
44

47
46

0 1 2 46 47. . .3

0 2 46

4 5

4

0 4

. . .

0

0

8

. . .

. . .

0

16 32

log p steps

Friday, January 28, 2011

Parallel reduce scales as log p.

Reduce parallel scaling

Number of cores

Ti
m

e
(m

ic
ro

se
co

nd
s)

0

100

200

300

400

500

600

700

0 2 4 12 24 36 48

6.4x speedup

Naive

Tree-based

Friday, January 28, 2011

Conclusions

We demonstrate significant speedup for collective
communication by efficiently utilizing the message-passing buffer

Possible programming models for the SCC?

MPI-like, hide MPB complexity hidden from the user

Programmer uses collectives (which can be tuned)

Future work

Study other collective patterns

Project real application scalability on the SCC

Power studies

Friday, January 28, 2011

References

Intel Communities: Many-core Applications Research
Community

http://communities.intel.com/community/marc

Howard et al., A 48-core IA-32 Message Passing Processor
with DVFS in 45 nm CMOS, Proc. ISSCC 2010.

Mattson et al., The 48-core SCC processor: The
Programmer’s View, Proc. SC 2010.

Friday, January 28, 2011

http://communities.intel.com/community/marc
http://communities.intel.com/community/marc

Questions? aparna@cc.gatech.edu

Friday, January 28, 2011

mailto:aparna@gatech.edu
mailto:aparna@gatech.edu

Friday, January 28, 2011

Backup

Friday, January 28, 2011

