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Talk Summary

We characterize the SCC on-chip interconnection network with 
micro-benchmarks

Observed point-to-point latency, bandwidth

Performance model

We present new collective communication algorithms for the 
SCC

Broadcast 22x faster than prior approach

Reduce 6.4x faster than prior approach

SCC access to Georgia Tech provided through Intel’s MARC 
(Many-Core Applications Research Community) initiative
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Single-chip Cloud 
Computer

Experimental 48-core CPU

Fine-grained power management 

Enables exploration of alternative 
‘scalable’ programming models by 
removing hardware cache coherence

Source: Justin Rattner, “Intel SCC” announcement
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2 P54C cores per tile

4 Integrated DDR3 memory controllers

2D mesh interconnect, 64 GB/s link bandwidth

8 KB globally addressable “Message Passing Buffer” per core 

16 KB L1, 256 KB L2 cache per core
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SCC Memory Hierarchy
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Synchronous two-sided 
messaging

1. Copy: local memory to MPB
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Synchronous two-sided 
messaging

2: Signal: data ready
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Synchronous two-sided 
messaging

3: Copy: remote MPB to local MPB
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4: Signal: Acknowledgement
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Synchronous two-sided 
messaging
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Programming models 
for SCC

Use one-sided get/put, expose MPB to the 
programmer

expert programmer, fine-grained control

Two-sided synchronous send/recv with messaging 
details hidden from programmer

MPI-like

RCCE: communication environment developed 
by Intel

Supports both these models
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Goals and Contributions

Evaluation of the on-chip interconnection 
network 

Microbenchmarks to identify cost of various 
messaging building blocks

Performance model from observations

Design optimized collective communication 
schemes, assuming a high-level “MPI”-like 
programmer interface

Friday, January 28, 2011
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Experimental Setup

Configuration: Cores at 533 MHz, Router at 800 
MHz, DDR3 800 memory

L2 disabled

DRAM to MPB copy step not timed

8KB/core limit on on-chip messaging

Pipeline longer messages
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MPB read bandwidth ~ 4x lower than L1 bandwidth

MPB read

L1-cache read

Local MPB read performance
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Local MPB write performance

Writes to local MPB ~ 1.4x more expensive than read
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Remote MPB read vs Message size

Remote read time increments proportional to number of hops
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Remote MPB read/write vs Hop count

64 B message. Slope gives router latency: ~ 5 ns.
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Measuring Bisection 
bandwidth

2048 B message, comparison to 

“no contention” case

No contention

19.93 microseconds 19.2 microseconds 
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Performance Model &
Observations

Local MPB read

Remote MPB read

Local MPB write

Remote MPB write

(# of cache lines) * 105 ns

(# of cache lines) * (105 ns + (# of hops) 
* 5 ns)

(# of cache lines) * 145 ns

(# of cache lines) * (145 ns + (# of hops) 
* 5 ns)
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Observed Bandwidths 
(MB/s)

Local MPB read

Remote MPB (8-hop) read

Local MPB write

Remote MPB (8-hop) write

L1

DRAM/core (1 core)

DRAM/core (12 cores)
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220

220
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1220

160

130
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Designing collectives

Performance model guides design of optimal 
scheme

Two case studies:

Broadcast

Reduce
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Broadcast algorithm Naive: put-based approach
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Broadcast algorithm Core 0 writes to remote MPB’s
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Broadcast algorithm Core 0 writes to remote MPB’s
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Broadcast algorithm Core 0 writes to remote MPB’s
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Broadcast algorithm Core 0 writes to remote MPB’s
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Broadcast algorithm Core 0 writes to remote MPB’s

p-1 steps
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Parallel broadcast 
algorithm

All cores fetch data from core 0’s MPB

One step, possible 
contention over the 

network
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Network contention doesn’t seem to hurt broadcast performance

Broadcast parallel scaling
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Parallel reduce scales as log p.

Reduce parallel scaling
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Conclusions

We demonstrate significant speedup for collective 
communication by efficiently utilizing the message-passing buffer

Possible programming models for the SCC? 

MPI-like, hide MPB complexity hidden from the user

Programmer uses collectives (which can be tuned)

Future work

Study other collective patterns

Project real application scalability on the SCC

Power studies
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