
 v0.006

IP2

ISAAC Parallel Image Processing

Getting Started

 IP2 Getting Started

 1 v1.00b

1 Introduction

1.1 What is IP2?
The shortest answer is ISAAC Parallel Image Processing (IP2), which hints at a few things, but is

otherwise not terribly informative. IP2 is an astronomy image processing application designed to support

a very effective, but very computationally intensive, image differencing method. The image processing in

IP2 uses commodity parallel-processing methods for significant acceleration. While the original

application is primarily image differencing (a.k.a. subtraction), this differencing function is a first utility

in what is intended to be a more general pipeline application for high-speed processing of large

astronomical images.

To address the scalability and performance required by large data volumes, the current data acquisition,

processing and analyses algorithms require review, and in some cases, rewrite. Several efforts are

underway to attain the needed high-performance computing by exploiting the emerging hardware

availability, and development software support, of massively parallel many-core and accelerator

architectures. In collaboration with one such effort spearheaded at UC Berkeley and Lawrence Berkeley

National Laboratory (LBNL), titled Infrastructure for Astrophysics Applications Computing (ISAAC),

IP2 was initially created to explore acceleration of a non-traditional and high-impact spatially-varying

convolution algorithm as a part of astronomical image subtraction.

The initial focus of this application has been accelerating a computationally intensive method for image

differencing in astronomy. The technique is known as Optimal Image Subtraction (OIS) [1] which uses a

convolution technique to match the point spread function (PSF) between images. In many situations,

especially with larger images, the PSF can vary across the image, requiring a spatially-varying

convolution [2] in order to achieve high quality subtractions.

Figure 1.1 Example OIS subtraction. Two images taken at different times are matched and

subtracted, yielding a difference image showing what has changed photometrically. The

difference image on the right reveals two faint asteroids that have moved in the time between

exposures. Image credit for the original exposures on the left: NEAT, courtesy NASA/JPL-

Caltech. The difference image on the right has been generated with IP2. Image source [3].

The convolution in OIS relies on fitting a superposition of basis functions to describe the convolution

kernel. Traditionally this has been done using a superposition of Gaussian function bases (GFB).

However, the GFB assumes a highly symmetric PSF of a Gaussian nature. The PSF from an optical

telescope should tend toward a superposition of Gaussian functions in the ideal situation. In reality, many

images have asymmetric and non-Gaussian PSFs. This can be caused by any number of effects, from

 IP2 Getting Started

 2 v1.00b

atmospherics and the telescope itself to side effects from adaptive optics or other upstream image

processing. Alternatively is the Dirac delta function basis (DFB) [4] which is seeing increasing use due to

its adaptability to complex PSF structure, but the DFB adds dramatically to the computation (typically an

order of magnitude, but up to two orders). Using OpenMP or GPUs can dramatically accelerate the DFB

OIS [3], making it practical for applying to large images with high acquisition cadence or very large data

sets. The acceleration can be over three orders of magnitude from the IDL implementation of the 2
nd

-order

fit DFB OIS for large images, as shown in Figure 1.2.

Figure 1.2 Computation times for the DFB spatially-varying convolution using the original

IDL starting point compared to the IP2 accelerated CPU and GPU implementations.

For smaller images, IP2 offers little to no advantage over traditional single threaded code, but images

continue to grow in size, and even the tiles of mosaic cameras are now usually larger than 2k x 2k. As

CCD technology continues to advance, raw images and tiles on the scale of 10k x 10k are on the

immediate horizon.

Figure 1.3 Dirac delta function spatially-varying convolution speeds using multi-core CPUs

or a GPU with IP2.

 IP2 Getting Started

 3 v1.00b

IP2 also introduces techniques for ameliorating a tendency of the DFB OIS to over-fit the kernel to noise

in the image, such as threshold limiting small signals in the samples used in fitting.

1.2 Installation
This is a Beta release of IP2. It operates on a single node computer. A cluster-scalable version has been

demonstrated and is available for collaborative deployments. Initial deployments of the cluster code have

indicated a frequent need for detailed integration, which is best served by engaging directly with the

ISAAC team.

1.2.1 Hardware and Software Requirements
This release of IP2 is only supported under 64-bit Linux. The application utilizes the g++ compiler by

default, though it has also been built with Intel, HP, and PGI compilers. Additionally, the GOMP library

for the GNU version of OpenMP multi-core CPU support should be installed. Other OpenMP libraries

will work in many cases, but have not been extensively tested. Any deviation from g++ and GOMP may

well require the user to edit the IP2 makefiles.

The IP2 application may be built with or without GPU support. For the GPU supported version, CUDA

4.1 or higher must be installed. Only NVIDIA GPU cards with a compute capability 2.0 or higher will be

used for GPU computation in IP2.

1.2.2 Installing IP2
Copy the downloaded tar file to the desired location and extract the contents, e.g.:

tar –xzf ip2sn_x.xx.xxxxb.tgz

Then build the code:

cd ip2sn_x.xx.xxxxb

./buildip2sn.sh

Or

./buildip2sn.sh nogpu

To force a build without CUDA and GPU support.

If your GPU libraries are in a non-standard location (/usr/local/cuda has been assumed), you may need to

edit the script buildip2sn.sh and supply the correct paths (clearly marked near line 48). For non-

GPU builds this is not an issue.

The build script will attempt to automatically detect the presence of CUDA and build the appropriate

version. If successful, the build process places the executable ip2sn into the build directory.

For OpenMP, the environment variable OMP_NUM_THREADS should be set to the number of available

CPU cores (or possibly the total number of CPU cores minus one on some systems) for the best

performance.

 IP2 Getting Started

 4 v1.00b

1.3 Running the Basic Test Sample
The distribution includes some simple prebuilt examples that can be used to verify the operation, and

serve as samples for creating your own processing operations. IP2 uses a plain text input file called a

recipe to describe what is to be done. The use of a recipe avoids the need for an overly complex command

line.

To verify the installation run:

./testrunip2sh

The testrunip2.sh script contains a very standard example of an IP2 instantiation. The general

command line parameters are as follows:

./ip2sn –v <verbosity> -c <configfile> -f <recipefile> -l <logfile>

 -v ranges from 0 to 3, a value of 1 or 2 is usually best for useful information. -v is optional.

 -c defines a configuration file for setting global values, an example is provided in the ip2etc

directory provided in the distribution. A configuration file is optional but recommended.

 -f defines the recipe file. A recipe file is required. The recipe defines what actions are to be

performed on what data files, and where the out is to be written.

 -l defines a log file. A log file definition is optional, but if you do not provide one, IP2 will create

a unique log file name every time it runs. The unique name will consist of a concatenated date

and time that application was launched. If a log file definition is provided, the any existing log

file by the same name will be over written. It is recommended that you provide a log file name.

2 Recipe Files

2.1 Command Structure
Commands are defined in a recipe file and structured within a task or a series of tasks. The concept of the

task is to encapsulate operations that require multiple commands, but that are operating on the same set of

image files. An example of such a scenario for task encapsulation is a pair of images that must be

calibrated and then co-added.

2.1.1 Recipe Files
Tasks and commands are defined in a plain text recipe file. The performance motivation of the recipe file

is to eliminate the overhead and complexity of writing complex shell scripts in order to describe a large

number of image processing steps. Simple helper applications or shell scripts can be used to automate the

generation of the recipe files, or they can be written by hand in any text editor. The basic structure of the

recipe is that of a keyword-parameter pair on a single line:

 [keyword] <parameter string> [end of line].

 IP2 Getting Started

 5 v1.00b

Note that keywords and parameters are case sensitive.

The purpose of the recipe file is to provide a human readable and writable interface to IP2. Once the

application is launched, the recipe file is immediately parsed and converted into linked-lists of data

structures for processing in the compute nodes. The parsing is accomplished by high-speed matching of

keywords in the recipe file to a lookup table. Once matched, the remainder of the line is processed as a

parameter, where the parameter type is also specified in a lookup table. Any necessary conversions from a

text string variable to integers or floating point numbers take place at this stage. Keywords and

parameters are converted into data structures that are linked in the order of discovery, which, for

command sequences, becomes the order of execution.

The syntax is that of nested Task and Cmd (command) operations. All command parameters must appear

between the Cmd keyword and an associated CmdEnd keyword. All commands must be fully contained

within a task between the Task and TaskEnd keywords. The basic structure of the task/command

relationship is illustrated in Figure 2.1 and demonstrated in the example recipe shown in Figure 2.6.

 IP2 Getting Started

 6 v1.00b

Figure 2.1 Diagram of task and command hierarchical structure

In the example recipe that follows in Figure 2.6, there are two independent tasks, each operating on

separate image files. The tasks can be processed on the same node, each in turn, or they can be sent to

separate nodes for simultaneous processing. The first task in the example performs a calibration step on a

set of images, followed by a co-addition of the calibrated results. The second task performs an OIS

subtraction of two other images.

2.2 Image Manipulation Commands
Images inputs for OIS must be in the standard FITS file format [5], used widely throughout astronomy.

FITS file images must not be in compressed format.

The primary motivation for the creation of IP2 is to provide an accelerated platform for OIS. But a single

operation tool, even one as powerful as OIS, is of limited appeal. A full-featured pipeline has many image

 IP2 Getting Started

 7 v1.00b

manipulation operations to perform. The most basic operations are those used in image calibration. In this

context calibration is the process taken to clean up the image data from the raw form that comes directly

off of the detector, a CCD in most cases, by removing instrument induced artifacts. Several basic image

math operations have been implemented in IP2 to support standard calibration functions. The standard

calibration operations in Table 2-1 are all implemented in OpenMP parallelism. Because most of the

commands only perform one or two mathematical operations per pixel on the image data, the computation

time is not sufficient to cover the data movement overhead required for GPU implementations, thus GPU

implementations are actually slower than OpenMP for these operations.

Table 2-1 IP2 Basic Commands for Image Calibration

Command Description
Add Basic pixel by pixel addition of two or more images

Median Add Adding two or more images while maintaining scale, this is useful for

creating co-added or “stacked” images that are scaled to the level of

the initial input images

Subtract Basic pixel by pixel subtraction (not OIS), useful for subtracting dark

and bias images to remove amplifier and thermal noise

Scale Multiply all pixels in an image by a given floating point value

Multiply Multiply two images pixel by pixel

FlatField A scaled divide of an image by a flat field image, see below for details

Table 2-2 lists the PSF matching commands currently implemented in IP2. The type of PSF matching is

defined through the basis functions and the order of the bivariate fitting polynomial. Set functions in the

configuration file or the recipe file will define the nature of the PSF matching.

Images must be co-aligned in an external tool prior to OIS subtraction or OIA addition in this release of

IP2. Images up to 8k x 8k pixels have been tested successfully on the GPU version, and larger images can

be processed by GPU if there is sufficient memory available. Much larger images can also be processes

by disabling the GPU in the build process or in the configuration file and relying on OpenMP CPU

processing where there is generally more memory available.

Table 2-2 IP2 OIS Commands

Command Description
OIS OIS between two images. The inputs are the image and the reference

image to be subtracted.

OIA OIA is optimal image addition. This is an experimental technique for

co-adding images using the same PSF matching methods of OIS.

The concept is that by matching the PSF, the photometric linearity

of the combined image is preserved.

 IP2 Getting Started

 8 v1.00b

2.2.1 Basic Calibration Commands
Raw data as read directly from a CCD has several sources of detector induced and optically induced

artifacts. Systemic thermal photons and offsets induced by digital to analog converters and amplifiers

from the instrument and the environment can be reduced through the use of dark frames and bias frames

[6]. Dark frames are images made from exposures with a cover over the telescope or the shutter on the

camera closed, an example is shown in Figure 2.2. The dark frame is taken for the same exposure

duration and at the same detector temperature as the science images. As a result, the dark frame is a

“picture” of the thermal noise photon characteristics of the detector. A second type of dark frame is the

bias frame, an example of which appears in Figure 2.3. The bias frame has zero exposure time, and thus it

characterizes an image of the offsets induced by the electronics in the camera readout stage. Once

captured, the bias and the dark can both be subtracted from a raw image through a simple pixel-by-pixel

subtraction. It is standard practice to co-add several samples of dark and bias frames into a master dark

and master bias in order to reduce random noise effects. The very simple operation for dark frame

subtraction is shown in equation(0.1).

 , ,
N M

x y x y

Dark Bias

Corrected Original
N M

   
     
   

  
  

 
 (0.1)

While the dark frames primarily correct for detector issues, the flat frames correct for optical defects in

the telescope system [6]. The flat field image can capture issues with even small amounts of dust and

debris on any of the optical surfaces, including mirrors, filters, or lenses. The flat field image is also able

to characterize uneven illumination effects across the FOV such as those induced by vinetting. The flat

field image is acquired by taking an exposure of an even “flat-light” illuminated field, hence the name. It

is also standard practice to co-add several samples of the flat images into a master flat in order to reduce

random noise effects. An example flat field image is shown in Figure 2.4.

To remove the flat field artifacts from the science image, it is necessary to divide the image by a

normalized version of the flat field image. The normalization factor is acquired by finding an average

pixel value from a sample region near the center of the flat field, were darkening effects due to vinetting

are minimal. The science image is then divided, pixel by pixel, by the flat field.

An example of basic image processing is illustrated in Figure 2.5. Actual processing results will vary

greatly depending on the calibration images. At this time, IP2 does not represent any innovation in basic

image calibration commands, they are merely provided so that the pipeline can keep data internal to the

system while preparing images for subtraction or future IP2 features. Future work may examine

refinements to these basic image manipulation and calibration operations.

 IP2 Getting Started

 9 v1.00b

Figure 2.2 Example stacked master dark frame. A stacked image of 8 individual dark

combined using IP2. Image credit: W. Green, F. Mezzalira and S. Hartung/SBO.

Figure 2.3 Example stacked master bias frame. A stacked image of 10 individual bias frames

combined using IP2. Image credit: W. Green, F. Mezzalira and S. Hartung/SBO.

 IP2 Getting Started

 10 v1.00b

Figure 2.4 Example stacked master flat frame. Artifacts are due to dust and debris on the

optics, which are out of focus and generate circular Airy disk patterns, and vignetting seen

as a darkening in the corners. Image credit: W. Green, F. Mezzalira and S. Hartung/SBO.

,

,

,

,

,

x y

N
x y

x y

x y SampleAverage

x y

Flat

MasterFlat
N

Original
Corrected MasterFlat

MasterFlat







 (0.2)

Figure 2.5 Example raw image on the left as read from the CCD, image dark subtracted and

flat fielded in IP2 on the right. While some random noise remains, a great deal of the

systemic artifacts has been removed. False color image of the Bubble nebula in hydrogen-

alpha. Image credit: W. Green, F. Mezzalira and S. Hartung/SBO.

 IP2 Getting Started

 11 v1.00b

2.3 Diagnostic and Utility Commands
It is convenient to use the recipe command interface to provide other functions in addition to the built-in

image manipulation routines. The extended diagnostic and utility commands are listed in Table 2-3.

The shell command, in particular, allows for a great deal of flexibility by allowing an arbitrary string to be

passed to the operating system command line. Simple uses of the shell allowing recipe files to make

directories or move files as needed. The shell command also allows the use of externally compiled tools

(e.g. the Astromatic application suite) for accessing functionality that is not yet available inside of IP2.

Table 2-3 IP2 Diagnostic and Utility Commands

Command Description
ImgStats Performs a basic analysis on a specified image to determine max,

min, and standard deviation characteristics of the image as a whole

and of the sky background

Shell Allows passing a command string to the operating system command

shell for execution from a recipe file

Figure 2.6 shows an example IP2 recipe file.

 IP2 Getting Started

 12 v1.00b

Figure 2.6 Example IP2 recipe file with two independent tasks

Input file for the IP2 pipeline defining the processing recipe

This is a comment

JobName [some job name]

User [some user name for logging]

the common base directory for all tasks

JobBaseDir /home/worker/

Task NameForTask1

dark subtract images

 # basic subtraction works for darks and bias types

 Cmd Subtract

 # relative sub-directories and file names

 InputPath swtest/sbo/bubble/

 OutputPath swtest/sbo/bubble/

 OutputFitsFile CAL_00000200.Bubble_Nebula.FIT

 InputFitsFile SCI_00000200.Bubble_Nebula.FIT

 InputFitsFile DARK_-20_Ha.FIT

 CmdEnd

 Cmd Subtract

 InputPath swtest/sbo/bubble/

 OutputPath swtest/sbo/bubble/coadd/

 OutputFitsFile CAL_00000207.Bubble_Nebula.FIT

 InputFitsFile SCI_00000207.Bubble_Nebula.FIT

 InputFitsFile DARK_-20_Ha.FIT

 CmdEnd

median combine the calibrated images

 Cmd MedianAdd

 InputFileCount 2

 InputPath swtest/sbo/bubble/

 OutputPath swtest/

 OutputFitsFile medadd_img.fits

 InputFitsFile CAL_00000200.Bubble_Nebula.FIT

 InputFitsFile CAL_00000207.Bubble_Nebula.FIT

 CmdEnd

TaskEnd

define another task that operates on a different set of files

Task NameForTask2

 # perform Optimal Image Subtraction (OIS)

 Cmd OIS

 InputPath tmt/

 OutputPath tmt/diff/

 OutputFitsFile A-B_diff.fits

 InputFitsFile A_img.fits

 InputFitsFile B_img.fits

 CmdEnd

TaskEnd

 IP2 Getting Started

 13 v1.00b

2.4 Configuration File and Set Parameters
Configuration Set parameters are global values that affect the operations of IP2. A Set parameter can be

defined in either the main configuration file or in a recipe file. The last instance of the Set parameter that

is encountered is the one that will be used, thus it is possible to create a default set in a configuration file,

but override them whenever needed in a specific recipe file without needing to modify the configuration

file. An example configuration file with all of the currently available Set commands is provided in the file

“ip2etc/ip2.conf” in the source code release package.

The format for a Set parameter is:

Set <ParameterKeyWord> <value>

Table 2-4 IP2 Set Parameters

Parameter Description Type
NoGPU 0 = default, GPU will be used if found, 1 = suppress GPU

usage (CPU only) even if a suitable GPU is found

integer

ImageSat Pixel value for saturation (should actually be set for the level

above which pixel response may be non-linear). Default

value is 50000.0

float

SrcFindWindowSz Size in pixels of the sliding window used to identify sources

(usually stars) in images for OIS samples. Numbers

between 10 and 20 are often appropriate.

integer

SrcFindSigmaThresh Threshold above background for detecting OIS sample

sources in multipliers of 1σ of the background standard

deviation in general sky noise.

float

OISEnableAutoScan Default is 0. If set to 1, OIS will attempt DFB and GFB

kernels at each of the polynomial orders of 0, 1, and 2, and

it will keep the solution with the lowest σ of residuals in the

resulting subtraction

integer (0 or 1)

OISKernelSize Size in pixels of the convolution kernel to use. The maximum

value is 21 pixels. Generally values between 7 and 15 are

appropriate. If set to an even number, it will be rounded up

to the next odd number. If set to 0 (the default) OIS will

attempt to devise its own kernel width based on the

statistics of samples taken from the image.

integer

OISPolynomialDeg The spatially-varying convolution bivariate polynomial order

0, 1 or 2

integer (0, 1, or

2)

SaveConvRef Will cause the convolved reference image from the OIS

process to be written out to a fits file with _cref appended to

its name if set to 1.

integer (0 or 1)

SaveStamps

SaveKernels

SaveConvStamps

These diagnostic parameters will save sample stamp fits file

images of the unmodified stamps, the kernel derived at each

stamp, and the convolved reference at each stamp.

WARNING: this can generate a very large number of small

image files. These are all set to 0 by default

integer (0 or 1)

 IP2 Getting Started

 14 v1.00b

BrightSuppressionEnable Enable bright object residual suppression in OIS by setting to

1. Disable if 0. This is not a traditional masking system, but

feedback mechanism that nulls out excursions above a set

threshold in the vicinity of bright objects.

integer (0 or 1)

BrightSuppressionDetect Detection threshold for what is considered a bright object in

multipliers of 1σ above background in the original OIS

input image. Values between 20.0 and 100.0 are often

useful, but this can be very camera and telescope dependent.

float

BrightSuppressionThresh Threshold for what residuals in the OIS subtracted image

output will be suppressed, in multipliers of 1σ above

background.

float

UseSrcExtApp OIS requires a system of finding sources, preferably isolated

stars of moderate brightness, in order to select sample

regions for fitting the convolution kernel solution. Default

behavior uses an internal source detector, however, the

Astromatic S[ource]Extractor program

(http://www.astromatic.net/software/sextractor) may also be

used if it is available by setting the parameter to 1 (default

is 0).

integer (0 or 1)

SrcExtAppName If the S[ource]Extractor application name has been changed

from the default name, then this parameter may be used to

inform IP2 of the application’s current name on the system.

string

 The parameters that follow define the Gaussian forms

used in the GFB OIS

UseGauss 0 = default, OIS will use a 2
nd

-order Miller Dirac delta

function basis (DFB) for the spatially-varying convolution

kernel. 1 = use a more traditional Gaussian function basis

(GFB) for the spatially-varying convolution kernel.

integer (0 or 1)

UseAstierGFB 0 = default, use internally or user defined Gaussian

parameters. 1 = use the Gaussian basis parameters defined

by Astier as described by Miller [4] (see eqs. 12 and 14 in

Miller) . The Astier defaults are widths 0.7, 1.5, and 2.0,

and degrees 6, 4, and 2 respectively.

integer (0 or 1)

GaussWidth1

GaussWidth2

GaussWidth3

There are three Gaussian basis functions supported. Each of

these parameters sets the width of one of them. This is the

standard deviation of the Gaussian as a multiple of the

kernel width in pixels. The default values are 0.7, 1.5, and

2.0 respectively.

float

GaussDeg1

GaussDeg2

GaussDeg3

There are three Gaussian basis functions supported. Each of

these parameters sets the degree of the bivariate polynomial

that expands them. 0 is the non-Astier default consisting of

only the Gaussian with no polynomial expansion terms. It is

not recommended to set this above 6 for any one value as

that creates a very set of basis functions and will be very

slow with little potential value in the resulting subtraction.

In practice values above 0 are often better solved by the use

of the DFB.

integer (0 - 6)

2.5 Command Parameters
This section describes each of the IP2 image processing commands by examples of the recipe file

description.

http://www.astromatic.net/software/sextractor

 IP2 Getting Started

 15 v1.00b

2.5.1 Cmd OIS
Optimal Image Subtraction, by either GFB or DFB means of convolution PSF matching, depending on

Set parameter values.

 Cmd OIS

 InputPath images/

 OutputPath results/

 OutputFitsFile subtraction.fits

 InputFitsFile image.fits

 InputFitsFile reference.fits

 CmdEnd

Alternatively, if “Set UseSrcExtApp 1” is enabled, then the external application S[ource]Extractor is

used to find sample sites in the image. If S[ource]Extractor is to be called in real-time from by IP2, then

the command is no different from the above. However, if the user has a particular source list file

generated by S[ource]Extractor that they want to use, then they may specify it explicitly.

 Cmd OIS

 InputPath images/

 OutputPath results/

 OutputFitsFile subtraction.fits

 InputTextFile listfile.stars

 InputFitsFile image.fits

 InputFitsFile reference.fits

 CmdEnd

If this later method is used, the star list file must conform to a minimum of the S[ource]Extractor

parameters as defined in the parameter file provided in the file ip2etc/ip2srcext.param. Running

S[ource]Extractor with the provided param file will ensure proper operation. Additional parameters may

also be present in the star list file, but none of the parameters enabled by ip2etc/ip2srcext.param

should be excluded.

2.5.2 Cmd OIA
Optimal Image Addition, by either GFB or DFB means, depending on Set parameter values. OIA

performs the same PSF matching methods to mean addition as OIS does to subtraction. This is an

experimental technique for allowing the preservation of linear photometric response in the PSF during co-

addition.

 Cmd OIA

 InputPath images/

 OutputPath results/

 OutputFitsFile co-added.fits

 InputFitsFile image.fits

 InputFitsFile reference.fits

 CmdEnd

 IP2 Getting Started

 16 v1.00b

2.5.3 Cmd Subtraction
Simple pixel by pixel subtraction, useful in removal of dark frame or bias frame features.

 Cmd Subtract

 InputPath images/

 OutputPath results/

 OutputFitsFile correctedimage.fits

 InputFitsFile image.fits

 InputFitsFile dark.fits

 CmdEnd

2.5.4 Cmd Add
Simple pixel by pixel addition of two or more images.

 Cmd Add

 InputPath images/

 OutputPath results/

 InputFileCount 3

 OutputFitsFile image123.fits

 InputFitsFile image1.fits

 InputFitsFile image2.fits

 InputFitsFile image3.fits

 CmdEnd

2.5.5 Cmd MedianAdd
Simple pixel by pixel addition and averaging.

 Cmd Add

 InputPath images/

 OutputPath results/

 InputFileCount 3

 OutputFitsFile image123div3.fits

 InputFitsFile image1.fits

 InputFitsFile image2.fits

 InputFitsFile image3.fits

 CmdEnd

2.5.6 Cmd Scale
Simple pixel by multiplication of a fixed value.

 Cmd Scale

 InputPath images/

 OutputPath results/

 Float 3.0

 OutputFitsFile image12.fits

 InputFitsFile image1.fits

 InputFitsFile image2.fits

 CmdEnd

 IP2 Getting Started

 17 v1.00b

2.5.7 Cmd Multiply
Simple pixel by multiplication of a two images.

 Cmd Multiply

 InputPath images/

 OutputPath results/

 Float 3.0

 OutputFitsFile image1mult3.fits

 InputFitsFile image1.fits

 CmdEnd

2.5.8 Cmd FlatField
Scaled division by flat field image.

 Cmd FlatField

 InputPath images/

 FlatPath flats/

 OutputPath results/

 OutputFitsFile correctedimage.fits

 InputFitsFile image.fits

 InputFitsFlat flat.fits

 CmdEnd

2.5.9 Cmd ImgStats
Calculate some basic image statistics and output them to the console.

 Cmd ImgStats

 InputPath images/

 InputFitsFile image.fits

 CmdEnd

2.5.10 Cmd Shell
Send the specified string to the unix shell and wait for the result. Useful for running external operations as

part of a recipe. Can be used to create directories, copy or move files, remove intermediate files that are

no longer needed, or run an application that is complimentary to IP2 as part of the processing, just as a

few examples.

 Cmd Shell

 String <any valid unix shell command line string>

 CmdEnd

 IP2 Getting Started

 18 v1.00b

[1] C. Alard and R. H. Lupton, "A Method for Optimal Image Subtraction," The Astrophysical

Journal, p. 325, 1998.

[2] C. Alard, "Image subtraction using a space-varying kernel," Astronomy & Astrophysics

Supplement Series, vol. 144, pp. 363-370, 2000.

[3] S. Hartung, et al., "GPU Acceleration of Image Convolution using Spatially-varying Kernel,"

presented at the IEEE International Conference on Image Processing (ICIP) 2012, Orlando,

Florida, 2012.

[4] J. P. Miller, et al., "Optimal Image Subtraction Method: Summary Derivations, Applications, and

Publicly Shared Application Using IDL," Publications of the Astronomical Society of the Pacific,

vol. 120, pp. 449-464, 2008.

[5] R. J. Hanisch, et al., "Definition of the Flexible Image Transport System (FITS)," Astronomy &

Astrophysics, vol. 376, pp. 359-380, 2001.

[6] S. B. Howell, Handbook of CCD Astronomy, 2nd ed. vol. 5. New York, NY: Cambridge

University Press, 2006.

