Introduction to
CUDA Programming

Hemant Shukla
hshukla@Ibl.gov




I rends Figure courtesy of Kunle Olukotun, Lance

Hammond, Herb Sutter, and Burton Smith

10,000,000
Traditional source of
Scientific Data Deluge 1000000 performance are flat-lining /-‘
LSST 0.5 PB/month — / i
JGI 5TB/yr” -
LOFAR 500 GB/s —
SKA 100 x LOFAR
1,000
Energy Efficiency
100 E
Exascale will need "
1000x Performance 10 ,./
enhancement with 10x _/? ¥
energy consumption 1 _,/. - Tandistors 000) |
Flops/watt i )
5 1 [ [

" Jeff Broughton (NERSC) and JGI

m

1970 1975 1980 1985 1990 1995 2000 2005 2010

frererer

ssssssssss

0 ), Office of @ ICCS Introduction to CUDA Programming - Hemant Shukla 2
| d Science el




Developments

Industry

Emergence of more cores on single chips

Number of cores per chip double every two years

Systems with millions of concurrent threads

Systems with inter and intra-chip parallelism

Architectural designs driven by reduction in Energy Consumption
New Parallel Programming models, languages, frameworks, ...

Academia

Graphical Processing Units (GPUs) are adopted as co-processors for
high performance computing
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Architectural Differences
CPU GPU
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Less than 20 cores 512 cores
1-2 threads per core 10s to 100s of threads per core
Latency is hidden by large cache Latency is hidden by fast context
switching
GPUs don'’t run without CPUs
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CPUs vs. GPUs

Silly debate... It’s all about Cores

Next phase of HPC has been touted as “Disruptive”
Future HPC is massively parallel and likely on hybrid architectures

Programming models may not resemble the current state

Embrace change and brace for impact

Write modular, adaptable and easily mutative applications
Build auto-code generators, auto-tuning tools, frameworks, libraries

Use this opportunity to learn how to efficiently program massively parallel
systems
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N-body with SCDM

X-ray computed EoR with diesel powered
tomography radio interferometry

Lincoln Greenhill et al.
512 antennas, correlated visibilities for
130,000 baseline pairs, each with 768

. _ channels and 4 polarizations ~ 20

Alain Bonissent et al.  Tfiops. Power budget 20 kW.

Total volume INTEL Core2 Quad 2.66GHz = 1121 ms

560 x 560 x 960 pixels  NVIDIA GPU C1060 B e —
360 projections : .

Speed up = 110x 4.5 giga-particles, R = 630 Mpc

2000x more volume than Kawai et al.
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GPU
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GPU le Example 16 Stream Multiprocessors (SM)

512 CUDA cores (32/SM)

IEEE 754-2008 floating point (DP and SP)
NVIDIA FERMI
6 GB GDDR5 DRAM (Global Memory)

SM ECC Memory support

Two DMA interface

DRAMI/F
=2 (e

. TEE Reconﬁgurable L1
Cache and Shared

W ()
ﬁ § L1
3 2 Shared Memory Memory
—_— 3 48 KB/ 16 KB
r L2 L2 Cache 768 KB
S S SN SE——— S— — —
CUDA Core
Dispatch Port
2 oPe*ra"d C°"e;t°r Load/Store address
= width 64 bits. Can
— 1T L T I T I T 1T T 1T T 1T 11 €
m m calculate addresses of
Result Queue 16 threads per clock.
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Programming Models

CUDA (Compute Unified Device Architecture)
OpenACC

OpenCL

Microsoft's DirectCompute

Third party wrappers are also available for Python, Perl, Fortran,
Java, Ruby, Lua, MATLAB and IDL, and Mathematica

Compilers from PGI, RCC, HMPP, Copperhead
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CUDA

CUDA Device Driver
CUDA Toolkit (compiler, debugger, profiler, lib)

CUDA SDK (examples)
Windows, Mac OS, Linux

Parallel Computing Architecture

Application

nvcc C/C++ Compiler
DX Java
C/C++ G OpenCL FORTRAN Python
NVIDIA Assembly Host Assembly
NVIDIA CUDA Compatible GPU
CUDA Runtime and Device Driver

Libraries — FFT, Sparse Matrix, BLAS, RNG, CUSP, Thrust...
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Dataflow

Host (CPU)

Host launches
kernel on the

device

PCle

Data is copied

from the host

memory to the

device memory
via PCle Bus

Sc:ence =
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The results are moved
back to the device
memory and are
transferred back to the
host via PCle bus

Introduction to CUDA Programming - Hemant Shukla

Device (GPU)

Device Memory

\ 4
I ]

The kernel is
executed by
multiple threads
concurrently

The data within
the device is
accessed by

threads through

memory hierarchy
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S/W Abstraction ¢ ——————

e | TR TR TR
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512-1024 threads / block

P/

Kernel is executed by threads Maximum 8 blocks per SM One grid per kernel with
processed by CUDA Core 32 parallel threads are multiple concurrent kernels
executed at the same time in
a WARP

DRAMIF
d/1NVHa

CUDA Core
1 Dispatch Port
Operand Collector

5
=
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Result Queue

DRAMI/F
d/1NV¥a
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Memory Hierarchy

Registers

Private memory ? Thread < > Local Memory per
Thread

Visible only to the thread Block

> Shared Memory

Shared memory per Block

Visible to all the threads in a block

Global memory

A

i
>
Visible to all the threads %%%?%% %?%%% = S
.. (@)

Visible to host - aE)
Accessible to multiple kernels Grid 0 § %
Data is stored in row major order %}%%%% %%% © =
o] +
(@) (%)
Constant memory (Read Only) %@%%%% %%%%?%?% ¢ ) §

Visible to all the threads in a block ¢

Grid 1
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CUDA API Examples
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Which GPU do | have?

int

{

main()

int n
/* ge
cudaG

cudaD
for (
{

}

#include <stdio.h>

oOfDevices;
t no. of device */
etDeviceCount (&noOfDevices);

eviceProp prop;
int 1 = @; 1 < noOfDevices; 1i++)

/*get device properties */
cudaGetDeviceProperties (&prop, 1 );

printf ("Device Name:\t %s\n", prop.name);

printf ("Total global memory:\t %lLd\n",
prop.totalGlobalMem);

printf (”No. of SMs:\t %d\n",
prop.multiProcessorCount);

printf ("Shared memory / SM:\t %ld\n",
prop.sharedMemPerBlock);

printf("Registers / SM:\t %d\n",
prop.regsPerBlock);

return 1;

lE:E:ggzszsil

>
A
frreeee ﬂ
;;;;;Q\\

Use
cudaGetDeviceCount

cudaGetDeviceProperties

Compilation

> nvcc whatDevice.cu —o whatDevice

Output

Device Name: Tesla C2050
Total global memory: 2817720320
No. of SMs: 14

Shared memory / SM: 49152
Registers / SM: 32768

For more properties see
struct cudaDeviceProp

For details see CUDA Reference Manual
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Timing with CUDA Event API

int main O

1 CUDA Event API Timer are,

cudaEvent_t start, stop;
float time;

- OS independent
cudaEventCreate (&start);

cudaEventCreate (&stop); - High resolution

- Useful for timing asynchronous calls
cudaEventRecord (start, 0);

someKernel <<<grids, blocks, @, 0>>> (...);

cudaEventRecord (stop, 0);
cudakventSynchronize (stop); «— | Ensures kernel execution has completed

cudakventElapsedTime (&time, start, stop);

cudakventDestroy (start);
cudaEventDestroy (stop);

printf ("Elapsed time %f sec\n", time*.001);

1 return 43 Standard CPU timers will not measure the

timing information of the device.
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Memory Allocations / Copies

int main O

{

float host_signal[N]; host_result[N];

float *device signal, *device result; I10Stand device have separate physical memory

//allocate memory on the device (GPU)
cudaMalloc ((void**) &device_signal, N * sizeof(float));
cudaMalloc ((void**) &device_result, N * sizeof(float));

. Get data for the host_signal array

// copy host_signal array to the device
cudaMemcpy (device_signal, host_signal , N * sizeof(float),
cudaMemcpyHostToDevice);

someKernel <<<< >>> (...);

//copy the result back from device to the host
cudaMemcpy (host_result, device_result, N * sizeof(float),
cudaMemcpyDeviceToHost);

Cannot dereference

. host pointers on device
cudaFr'ee (device_signal); cudaFree (device_result) ; and vice versa

//display the results
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Basic Memory Methods

cudaError_t cudaMalloc (void ** devPtr, size_t size)

Allocates size bytes of linear memory on the device and returns in *devPtr a pointer to the
allocated memory. In case of failure cudaMalloc() returns cudaErrorMemoryAllocation.

Blocking call

cudaError_t cudaMemcpy (void #* dst, const void * src, size_t count, enum
cudaMemcpyKind kind)

Copies count bytes from the memory area pointed to by src to the memory area pointed to by
dst. The argument kind is one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, or cudaMemcpyDeviceToDevice, and specifies the direction of the

copy.

Non-Blocking call

cudaError_t cudaMemcpyAsync (void * dst, const void * src, size_t count,
enum cudaMemcpyKind kind, cudaStream_t stream)

cudaMemcpyAsync() is asynchronous with respect to the host. The call may return before the copy
is complete. It only works on page-locked host memory and returns an error if a pointer to pageable
memory is passed as input.

See also, cudaMemset, cudaFree,

Sc:ence
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Kernel
The CUDA kernel is,

Run on device

Defined by __global__ qualifier and does not return anything
__global

Executed asynchronously by the host with <<< >>> qualifier, for example,

void someKernel ();

someKernel <<<nGrid, nBlocks, sharedMemory, streams>>> (...)
someKernel <<<nGrid, nBlocks>>> (...)

The kernel launches a 1- or 2-D grid of 1-, 2- or 3-D blocks of threads
Each thread executes the same kernel in parallel (SIMT)

Threads within blocks can communicate via shared memory

Threads within blocks can be synchronized

Grids and blocks are of type struct dim3

Built-in variables gridDim, blockDim, threadIdx, blockIdx are used to
traverse across the device memory space with multi-dimensional indexing

Sc:ence
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Grids, Blocks and Threads

Grid
Block someKernel<<< 1, 1 >>> ();
% gridDim.x =1
Thread blockDim.x =1
blockIdx.x =0
threadIldx.x = 0
dim3 blocks (2,1,1);
%§<§% block (0, 0) someKernel<<< (blocks, 4) >>> ();
gridDim.x = 2;
blockDim.x = 4;
%%%% block (1, 0) blockIdx.x = 0,1;
threadldx.x = 0,1,2,3,0,1,2,3

<<< number of blocks in a grid, number of threads per block >>>

Useful for multidimensional indexing and creating unique thread IDs

int index = threadIdx.x + blockDim.x * blockIdx.x;

r:n\n| |.ﬁ| @ Office ot @ |ICCS Introduction to CUDA Programming - Hemant Shukla
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Thread Indices

Array traversal

int index = threadIdx.x + blockDim.x * blockIdx.x;

l I l

blockDim.x = 4 blockDim.x = 4
blockIdx.x = 0@ blockIdx.x =1
threadldx.x = 0, 1, 2, 3  threadIdx.x = 0, 1, 2, 3
Index =0, 1, 2, 3 Index =4,5, 0,7
@M%)g’l%%ccg @ |Cqs Introduction to CUDA Programming - Hemant Shukla 21
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Example - Inner Product

Matrix-multiplication

Each element of product matrix C is generated by row column multiplication and
reduction of matrices A and B. This operation is similar to inner product of the
vector multiplication kind also known as vector dot product.

A B C
_ - _ - _ _ _
g
EEEEEEEEEEE = u
X [ | =
g
]
]
L N L ] N L N
N by N N by N N by N

For size N x N matrices the matrix-multiplication C = A - B will be equivalent to
N2 independent (hence parallel) inner products.
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Example

Serial representation
double ¢ = 0.0;

¢ = Eaibi for (int 1 = 0; 1 < SIZE; i++)
; c += a[i] * b[i];

Simple parallelization strategy

Multiplications are done in parallel

Summation is sequential

A i . .
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Example

CUDA Kernel

__global__ void innerProduct (int *a, int *b, int *c)

{
int product[SIZE];

int i = threadIdx.x: __global__ void innerProduct (...)

{
if (1 < SIZE)
product[i] = a[i] * b[i]; }

int main O

innerProduct<<<grid, block>>> (...);

) Called in the host code

”T'hl m @ Office of & ICCS Introduction to CUDA Programming - Hemant Shukla 24
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Example

runs the kernel code in parallel.

__global__ void innerProduct (int *a, int *b, int *c)
{
int product[SIZE]; Qualifier __global__ encapsulates
) ) device specific code that runs on the
int 1 = threadIdx.x; device and is called by the host
. : |
if (1 < SIZE) .
X . . Other qualifiers are
— * . ’
product[i] = a[i] * b[1]; __device__, __host__,
host__and__device
threadIdx is a built in iterator for
threads. It has 3 dimensions x, y and
Z.
1 Each thread with a unique threadIdx.x

A . ) .
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Example

__global__
{
int product[SIZE];
int 1 = threadIdx.x;
if (i < SIZE)
product[i] = a[i] * b[i];
int sum = 0;
for (int k = 0; k < N; k++)
sum += product[k];
*C = sum;
¥

void innerProduct (int *a, int *b, int *c)

Now we can sum the all the products to get
the scalar ¢

Unfortunately this won’t work for following reasons,

- product[1i] is local to each thread
- Threads are not visible to each other

-
A .
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Example

__global

{
__shared__ int product[SIZE];

int 1 = threadldx.x;

if (i < SIZE)
product[i] = a[i] * b[i];

__syncthreads();

if (threadIdx.x == 0)
{

int sum = 0;

sum += product[k];
*C = sum;

__ void innerProduct (int *a, int *b, int *c)

First we make the product[1] visible to all the
threads by copying it to shared memory

Next we make sure that all the threads are
synchronized. In other words each thread has
finished its workload before we move ahead. We do
this by calling __syncthreads()

Finally we assign summation to one thread
(extremely inefficient reduction)

for (int k = @0; k < SIZE; k++)

Aside: cudaThreadSynchronize() is used

on the host side to synchronize host and device

A . ) .
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Example

__global

{
__shared__ int product[SIZE];

__ void innerProduct (int *a, int *b, int *c)
int 1 = threadldx.x;

if (i < SIZE)
product[i] = a[i] * b[i];

__syncthreads();
// Efficient reduction call

*c = someEfficientLibrary_reduce (product);

A . . .
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Performance Considerations

A
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Memory Bandwidth

Memory bandwidth — rate at which the data is transferred — is a valuable
metric to gauge the performance of an application

Theoretical Bandwidth
Memory bandwidth (GB/s) = Memory clock rate (Hz) x interface width (bytes) / 109

Real Bandwidth (Effective Bandwidth)
Bandwidth (GB/s) = [(bytes read + bytes written) / 10°]/ execution time

If real bandwidth is much lower than the theoretical then code may need review
Optimize on Real Bandwidth

May also use profilers to estimate bandwidth and bottlenecks
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Arithmetic Intensity

Memory access bandwidth of GPUs is limited compared to the peak compute
throughput

High arithmetic intensity (arithmetic operations per memory access) algorithms
perform well on such architectures

Example

Fermi peak throughput for SP is 1 TFLOP/s and DP is 0.5 TFLOP/s
Global memory (off-chip) bandwidth is 144 GB/s

For every 4 byte single precision floating point operand bandwidth is 36 GB/s and 18
GB/s for double precision

To obtain peak throughout will require 1000/36 ~ 28 SP (14 DP) arithmetic operations

A _ _ |
- :”'\"| i Office of Introduction to CUDA Programming - Hemant Shukla 31

cccccccccccccccccccc




Example revisited

{
__shared__ int product[SIZE];

int 1 = threadldx.x;

if (i < SIZE)
product[i] = a[i] * b[i];

__global__ void innerProduct (int *a, int *b, int *c)

__syncthreads();

if (threadIdx.x == 0)

{
int sum = 0;
for (int k = 0; k < SIZE; k++)

sum += product[k];

*C = sum;

¥

Contrast this with inner product example where for
every 2 memory (data a; and b;) accesses only two
operations (multiplication and add) are performed.
That is ratio of 1 as opposed to 28 that is required for
peak throughput.

\
Room for algorithm improvement!

Aside: Not all performance will be peak performance

A . ] _
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Optimization Strategies

Coalesced memory data accesses (use faster memories like shared memory)
Minimize data transfer over PCle (~ 5 GB/s)

Overlap data transfers and computations with asynchronous calls

Use fast page-locked memory (pinned memory — host memory guaranteed to device)
Judiciously

Threads in a block should be multiples of 32 (warp size). Experiment with your device

Smaller thread-blocks better than large many threads blocks when resource limited

Fast libraries (cuBLAS, Thrust, CUSP, cuFFT,...)

Built-in arithmetic instructions
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Atomic Functions

Used to avoid race conditions resulting from thread synchronization and coordination
issues.

Multiple threads accessing same address space for read/write simultaneously.
Applicable to both shared memory and global memory.

Atomic methods in CUDA guarantee address update without interrupts. Implemented
using locks and serialization.

Atomic functions run faster on shared memory than on shared memory.

Atomic functions should also be used judiciously as they serialize the code. Overuse
results in performance degradation.

Examples: atomicAdd, atomicMax, atomicXor...
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CUDA Streams

Stream is defined as sequence of device operations executed in order

Do memCopy || Starttimer || Launch kernel || Stop timer Stream 1

cudaStream_t stream@, streaml;
cudaStreamCreate (&streamd);

cudaMemCopyAsync (..., stream@); someKernel<<<..., stream@d>>>(Q);
cudaMemCopyAsync (..., streaml); someKernel<<<..., streaml>>>(Q);
cudaStreamSynchronize (streamd);

N streams performing
3 tasks

Time

»

Task (streém ID)

Down (3) Down (N)

Ker (2) c e Ker (N-1) Ker (N)
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Benchmarks
Relative Performance of Algorithms

Xeon X5550 (Nehalem) | NVIDIA C2050 (Fermi) |

1024 1 1024
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2

Arithmetic Intensity Courtesy - Sam Williams
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References

CUDA
http://developer.nvidia.com/category/zone/cuda-zone

OpenCL
http://www.khronos.org/opencl/

GPGPU
http://www.gpucomputing.net/

Advanced topics from Jan 2011 ICCS Summer School

http://iccs.Ibl.gov/workshops/tutorials.html
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Conclusion

If you have parallel code you may benefit from GPUs

In some cases algorithms written on sequential machines may not migrate
efficiently and require reexamination and rewrite

If you have short-term goal(s) it may be worthwhile looking into CUDA etc
CUDA provides better performance over OpenCL (Depends)

Most efficient codes optimally use the entire system and not just parts
Heterogeneous computing and parallel programming are here to stay

Number two2-PetaFlop/s HPC machine in the world (Tianhe-1 in China) is a
heterogeneous cluster with 7k+ NVIDIA GPUs and 14k Intel CPUs
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Algorithms

Lessons from ICCS Tutorials by Wen-Mei Hwu
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Think Parallel

Promote fine grain parallelism

Consider minimal data movement
Exploit parallel memory access patterns
Data layout

Data Blocking/Tiling

Load Balance

N/ :n}| o Office of Introduction to CUDA Programming - Hemant Shukla
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Amdhal’s Argument

time t;

<

v

Sequential Sequential

Parallel Code

Code Code

time t,

S
v

Sequential Sequential :
- . Code cannot run faster than time t,

Code Code

If X is the serialized part of the code then speedup cannot be greater than 1/1-X
no matter how many cores are added.

Sclence = L";:::ﬂ’::::’:::ﬁ:
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Blocking

Also known as Tiling.

Basic idea is to move blocks/tiles of commonly useable data from global
memory into shared memory or registers memory.

Register Tiling ()0 () Reuse computed results

Shared Memory Tiling D Get data blocks for
ﬁ thread to share

Global Memory

Sc:ence = proiniimin e
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Blocking / Tiling Technique

Focused Access pattern

|dentify block/tile of global memory data to be accessed by threads.

Load the data into the fast memory (Shared, register)
Get the multithreads to use the data

Assure barrier synchronization

Repeat (move to next block, next iterations etc.)

Make the most of one load of data into fast memory

A i . .
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Variables on Memory

CUDA Variable Type Qualifiers

__device__ __shared__ 1int Sharedvar;
__device__ int GlobalVar;
__device__ __constant__ int ConstantVar;

Kernel variables without any qualifiers reside in a registe with an
exception for arrays that reside in local memory

A . . .
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Matrix Multiplication

Example

«<— WIDTH ———

| I | .

A B -
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Matrix Multiplication...

CPU Version

volid matrixMultiplication ( float* A, float* B, float* C, int WIDTH)
{

for (1 > @ : WIDHT)
for (J > @ : WIDTH)

for (k = @ : WIDTH)

a = A;;
sum += a * b;
y Cij = sum;

A . . .
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Matrix Multiplication...

GPU Version (Memory locations)

__global__ void matrixMultiplication (

Shared memory

Constant memory

float* A, float* B, float* C, int WIDTH

int 1 = blockIdx.y * WIDTH + threadIdx.y;
int j = blockIdx.x * WIDTH + threadIdx.x;

// each thread computes one element of product matrix C

for (k > 0 : k)

sum += A[1][k] * B[k][j]; Global memory (read)

CLi1L3] = sum;
} Global memory (write)

~
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Kernel analysis

2 floating point read accesses, 2 x 4 bytes = 8 bytes per one
multiply and add that is 2 floating point operations per second (add
and multiply). Hence the throughput is 8 bytes / 2 = 4B / FLOPs.
Theoretical peak of Fermi is 530 FLOPs

To achieve peak will require bandwidth of 4 x 530 = 2120 GB/s
The actual bandwidth is 177GB/s

With this bandwidth it yields 177/4 = 44.25 FLOP/s

About 12 times below peak performance.

In practice it will be slower.

A . . .
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Matrix Multiplication...

How to speed up?

BLOCKING
Load data into shared memory and reuse
Since the Shared memory size is small it helps to partition the

data in equal sized blocks that fit into the shared memory and
reuse.

A . . .
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Matrix Multiplication...

Partial rows and columns are
loaded in shared memory

One row is reused to calculate
two elements.

Multiple blocks are executed in

parallel. Block/Tile

For a 16 x 16 tile width the

global memory loads are
reduced by 16.
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Matrix Multiplication...

B Ao Bo,o Coo = Ao Bo,, Coo =
Too 1 A_So,o * B_So,o + A_So,o * B_So,o +
A_ Sy, B_So0 A—Sl,O * B_So,l A_Syo B_Spp A_Sl,o * B_So,l
Ao, Bo,o C1,o = Az B, C1,0 =
& Ty g A_Sy, * B_S;o+ A_Sq, * B_S, o+
g A_S) ) B_S,, A_S) ) ¥ B_S,, A_S;, B_Si, A_S) ) ¥ B_S;,
IE A0,1 Bo,1 C0,1 = A2,1 Bos C0,1 =
Tos A_SO,l * B_So,o + A_So,1 * B_So,o +
A_Sq., B_Sy1 A_Sll1 * B_So,l A S,;  B_Sg, A_51,1 * B_So,l
A1,1 E"1,1 C1,1 = A3,1 B1,3 C1,1 =
< T4 A_Sq * B_S; o+ A_Sy, * B_S;o+

A_S;, B_S,, A S ,*B.S;, AS, BS,;, AS ,*B.S,

Time
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Matrix Multiplication...

__global__ void matrixMultiplication(float* A, float* B, float* C, int WIDTH,
int TILE_WIDTH)
{

__shared__float A_S[TILE_WIDTH]J[TILE_WIDTH];
__shared__float B_S[TILE_WIDTH][TILE_WIDTH];

int bx
int tx

blockIdx.x; 1int by
threadIdx.x; int ty

blockIdx.y;
threadIdx.y;

int Row =
int Col =
float sum

* TILE_WIDTH + tx;

by * TILE_WIDTH + ty;
bx

for (int m = @; m < Width/TILE_WIDTH; ++m) {

A_S[tx][ty] ALCm*TILE_WIDTH + tx)*Width+Row];
B_S[tx][ty] = B[Col*Width+(m*TILE_WIDTH + ty)];
__syncthreads();

for (int k = @; k < TILE_WIDTH; ++k)
sum += A_S[tx][k] * B_C[k][ty];
__synchthreads();

}
C [Row*Width+Col] = sum;
¥

¥ @ Office ot @ |ICCS Introduction to CUDA Programming - Hemant Shukla
| Science el

52



7-Point Stencil

W/ fercees Office of Introduction to CUDA Programming - Hemant Shukla
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Used for PDEs, Convolution etc.
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7-Point Stencil ...

Conceptually all points can be upgraded in parallel.
Each computations performs global sweep of entire data.

Memory bound.

Challenge is to parallelize without overusing memory bandwidth.
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7-Point Stencil ...

Calculate values along one axis.

Traversing the axis 3 values are needed along the axis

Keep the three values in the register for next iteration

This is called Register Tiling
For 7-point there are 2 in the register so only 5 access will be needed.
A combination of register and block tiling should give 7x speed up.

In reality 4-5x because halos have to be considered.
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Questions?

RY Office of g Introduction to CUDA Programming - Hemant Shukla
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Introduction to CUDA Programming - Hemant Shukla

57



Simulations
GAMER

Hsi-Yu Schive, T. Chiueh, and Y. C. Tsai

Astrophysics adaptive mesh refinement (AMR) code with solvers for hydrodynamics and gravity
Parallelization achieved by OpenMP, MPI on multi-node multicores and CUDA for accelerators (GPU)
Decoupling of AMR (CPU) and solvers (GPU) lends to increased performance, ease of code development
Speed-ups of the order of 10-12x attained on single and multi-GPU heterogeneous systems

GAMER Framework

Hemant Shukla, Hsi-Yu Schive, Tak-Pong Woo, and T. Chiueh

Generalized GAMER codebase to multi-science framework

Use GAMER to deeply benchmark heterogeneous hardware, optimizations and algorithms in applications
Collect performance, memory access, power consumption and various other metrics for broader user base
Develop codebases as ensembles of highly optimized existing and customizable components for HPC

A . . .
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Adaptive Mesh Refinement

2D Patch

I 1

Refinement with 2
spatial resolution per level /

Figure - Hsi-Yu Schive et al., 2010

83 cells per patch

0000 |dentical spatial geometry (same kernel)
0000 | o
I o Uniform and individual time-steps
0000 0000
0000 0000

Data stored in Octree data structure
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Construct and Dataflow

GAMER Codebase c++/CUDA, MPI, OpenMP
Solvers Poisson, Hydro, Custom,

AMR, Framework, Libraries . . .

2 -
G %
i ({58 idsRast] (saaRi0
Problem domain covered User defined refinement, spatial Concurrently patches are transferred
with coarse patch on CPUs averaging, flux correction on to GPUs, processed by solvers, one
CPUs cell per thread, and returned
| Time Steps >
~ Cluster
= =
= =
I : N
= eeo o E
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Solvers

Hydrodynamics PDE Solver

d(pv .
i, (ov)) _ 0
ot ox ;
d(pv,) N a(pvy +P6U) o
ot ox ; ox;
de dl(e+P)v,] I
+ =—-pV.—
ot ox ; T ox

3D Euler equations solved in 5 separate schemes

Second-order relaxing Total Variation Diminishing
Weighted average flux

MUSCL-Hancock (MHM)

MUSCL-Hancock (VL)

Corner transport upwind (CTU)

Flux conservation is done using Riemann Solver
(4 types - exact solver, HLLE, HLLC, and Roe)

Poisson-Gravity Solver

Vi(3) = 473G p(X)

Laplacian operator V2 is replaced by seven-point
finite difference operator

For root level patches Green’s functions is used
using FFTW

For refined levels SOR is used

Recently implemented

Multigrid Poisson Solver
Hilbert space-filling curve (load balancing)

Currently implementing

Fast Poisson Solver with Dirichlet’'s boundary
conditions
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GAMER Framework

Allows for adding custom/new solvers to the codebase

New Solver inherits

Async memcpy, concurrent execution, MPl and OpenMP optimization

New Solver implements

The size of computational stencil

An optimized CPU version of the implementation

An optimized GPU version of the implementation

CUDA thread blocks and stream objects

Sc:ence
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Multi-Science

Cosmological Large-scale Structure
Gravitational potential

Vi9(%) = 4nGal p(F) - p, (X)]

Bosonic Dark Matter

Schrodinger-Poisson equation

Gravitational Lensing Potential

Lens equation and mass relationship

i = % - Vo(3)

2 —_ —_ ~ ~ - ) B )
\Y% ¢(X) = E(X) /Ecr Structure due to dark matter model
ceee| N P, Ottice of Introduction to CUDA P ing - Hemant Shukl in early universe 63
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Kernel Analysis

GB/s

o o o, L1 cache hits while
150 Glopal Memow Ac?ess 0.0% 64.3% 15.9% global memory access
Max bandwidth 144 GB/s 268.77
B Read
B Write o))
=
5 E
100} 0 3
c e
O o)
© 5
o
2 :
< c > | O
50t o 402 xE
2 ©
N
3.57 |- I (n
= P
o = o &
o 258 ¢ 3
g e
0
Intensive use of SOR takes 20-30 iterations to converge
shared memory
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Results Large scale Cosmological Simulations with GAMER

Spatial resolution 32,768° Spatlal resolution 4,096°
5000 r - ' —250
- Hydrodynamics Solver
4500 - Poisson-Gravity Solver
4000 200
3500
€ 3000 150
3
» 2500

2000 100
1500
1000 150
500 Hemant Shukla,
Hsi-Yu Schive
0 et al. SC 2011
8 + 16 32 8 16 32

GPU
Nodes
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Results

3553 [

400
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Bosonic Dark Mater Simulation
Base level resolution 2563 to level 7 32,7683

- ) B Gravity
5.52 X Kinematic (Schrddinger's eqn.)
Il Fix-up
] Refinement
MPI
Time-step
4.79 X+
i I VL
. Hemant Shukla,
Hsi-Yu Schive
g + et al. SC 2011
GPU
Cores
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New Results

800

70071

600[

500

Seconds

200¢

100[

<
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Load Balance with Hilbert space filling curve

400

3001

Unbalanced Balanced

Il Gravity
I Kinematic (Schrodinger's eqn.)
Il Fix-up
| Refinement
MPI
Time-step
{OBX
8 +
GPU
Cores
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